File size: 8,318 Bytes
317b678
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
# Anime2sketch
# https://github.com/Mukosame/Anime2Sketch
'''
MIT License

Copyright (c) 2022 Caroline Chan

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
'''

import numpy as np
import torch
import torch.nn as nn
import functools

import os
import cv2
from einops import rearrange


class UnetGenerator(nn.Module):
    """Create a Unet-based generator"""

    def __init__(
        self,
        input_nc,
        output_nc,
        num_downs,
        ngf=64,
        norm_layer=nn.BatchNorm2d,
        use_dropout=False,
    ):
        """Construct a Unet generator
        Parameters:
            input_nc (int)  -- the number of channels in input images
            output_nc (int) -- the number of channels in output images
            num_downs (int) -- the number of downsamplings in UNet. For example, # if |num_downs| == 7,
                                image of size 128x128 will become of size 1x1 # at the bottleneck
            ngf (int)       -- the number of filters in the last conv layer
            norm_layer      -- normalization layer
        We construct the U-Net from the innermost layer to the outermost layer.
        It is a recursive process.
        """
        super(UnetGenerator, self).__init__()
        # construct unet structure
        unet_block = UnetSkipConnectionBlock(
            ngf * 8,
            ngf * 8,
            input_nc=None,
            submodule=None,
            norm_layer=norm_layer,
            innermost=True,
        )  # add the innermost layer
        for _ in range(num_downs - 5):  # add intermediate layers with ngf * 8 filters
            unet_block = UnetSkipConnectionBlock(
                ngf * 8,
                ngf * 8,
                input_nc=None,
                submodule=unet_block,
                norm_layer=norm_layer,
                use_dropout=use_dropout,
            )
        # gradually reduce the number of filters from ngf * 8 to ngf
        unet_block = UnetSkipConnectionBlock(
            ngf * 4, ngf * 8, input_nc=None, submodule=unet_block, norm_layer=norm_layer
        )
        unet_block = UnetSkipConnectionBlock(
            ngf * 2, ngf * 4, input_nc=None, submodule=unet_block, norm_layer=norm_layer
        )
        unet_block = UnetSkipConnectionBlock(
            ngf, ngf * 2, input_nc=None, submodule=unet_block, norm_layer=norm_layer
        )
        self.model = UnetSkipConnectionBlock(
            output_nc,
            ngf,
            input_nc=input_nc,
            submodule=unet_block,
            outermost=True,
            norm_layer=norm_layer,
        )  # add the outermost layer

    def forward(self, input):
        """Standard forward"""
        return self.model(input)


class UnetSkipConnectionBlock(nn.Module):
    """Defines the Unet submodule with skip connection.
    X -------------------identity----------------------
    |-- downsampling -- |submodule| -- upsampling --|
    """

    def __init__(
        self,
        outer_nc,
        inner_nc,
        input_nc=None,
        submodule=None,
        outermost=False,
        innermost=False,
        norm_layer=nn.BatchNorm2d,
        use_dropout=False,
    ):
        """Construct a Unet submodule with skip connections.
        Parameters:
            outer_nc (int) -- the number of filters in the outer conv layer
            inner_nc (int) -- the number of filters in the inner conv layer
            input_nc (int) -- the number of channels in input images/features
            submodule (UnetSkipConnectionBlock) -- previously defined submodules
            outermost (bool)    -- if this module is the outermost module
            innermost (bool)    -- if this module is the innermost module
            norm_layer          -- normalization layer
            use_dropout (bool)  -- if use dropout layers.
        """
        super(UnetSkipConnectionBlock, self).__init__()
        self.outermost = outermost
        if type(norm_layer) == functools.partial:
            use_bias = norm_layer.func == nn.InstanceNorm2d
        else:
            use_bias = norm_layer == nn.InstanceNorm2d
        if input_nc is None:
            input_nc = outer_nc
        downconv = nn.Conv2d(
            input_nc, inner_nc, kernel_size=4, stride=2, padding=1, bias=use_bias
        )
        downrelu = nn.LeakyReLU(0.2, True)
        downnorm = norm_layer(inner_nc)
        uprelu = nn.ReLU(True)
        upnorm = norm_layer(outer_nc)

        if outermost:
            upconv = nn.ConvTranspose2d(
                inner_nc * 2, outer_nc, kernel_size=4, stride=2, padding=1
            )
            down = [downconv]
            up = [uprelu, upconv, nn.Tanh()]
            model = down + [submodule] + up
        elif innermost:
            upconv = nn.ConvTranspose2d(
                inner_nc, outer_nc, kernel_size=4, stride=2, padding=1, bias=use_bias
            )
            down = [downrelu, downconv]
            up = [uprelu, upconv, upnorm]
            model = down + up
        else:
            upconv = nn.ConvTranspose2d(
                inner_nc * 2,
                outer_nc,
                kernel_size=4,
                stride=2,
                padding=1,
                bias=use_bias,
            )
            down = [downrelu, downconv, downnorm]
            up = [uprelu, upconv, upnorm]

            if use_dropout:
                model = down + [submodule] + up + [nn.Dropout(0.5)]
            else:
                model = down + [submodule] + up

        self.model = nn.Sequential(*model)

    def forward(self, x):
        if self.outermost:
            return self.model(x)
        else:  # add skip connections
            return torch.cat([x, self.model(x)], 1)


class LineartAnimeDetector:
    def __init__(self, model_path="hf_download"):
        remote_model_path = (
            "https://huggingface.co/lllyasviel/Annotators/resolve/main/netG.pth"
        )
        modelpath = os.path.join(model_path, "netG.pth")
        if not os.path.exists(modelpath):
            from .utils import load_file_from_url

            load_file_from_url(remote_model_path, model_dir=model_path)
        norm_layer = functools.partial(
            nn.InstanceNorm2d, affine=False, track_running_stats=False
        )
        net = UnetGenerator(3, 1, 8, 64, norm_layer=norm_layer, use_dropout=False)
        ckpt = torch.load(modelpath)
        for key in list(ckpt.keys()):
            if "module." in key:
                ckpt[key.replace("module.", "")] = ckpt[key]
                del ckpt[key]
        net.load_state_dict(ckpt)
        net = net.cuda()
        net.eval()
        self.model = net

    def __call__(self, input_image):
        H, W, C = input_image.shape
        Hn = 256 * int(np.ceil(float(H) / 256.0))
        Wn = 256 * int(np.ceil(float(W) / 256.0))
        img = cv2.resize(input_image, (Wn, Hn), interpolation=cv2.INTER_CUBIC)
        with torch.no_grad():
            image_feed = torch.from_numpy(img).float().cuda()
            image_feed = image_feed / 127.5 - 1.0
            image_feed = rearrange(image_feed, "h w c -> 1 c h w")

            line = self.model(image_feed)[0, 0] * 127.5 + 127.5
            line = line.cpu().numpy()

            line = cv2.resize(line, (W, H), interpolation=cv2.INTER_CUBIC)
            line = line.clip(0, 255).astype(np.uint8)
            return line