Spaces:
Running
on
Zero
Running
on
Zero
# From https://github.com/carolineec/informative-drawings | |
# MIT License | |
''' | |
MIT License | |
Copyright (c) 2022 Caroline Chan | |
Permission is hereby granted, free of charge, to any person obtaining a copy | |
of this software and associated documentation files (the "Software"), to deal | |
in the Software without restriction, including without limitation the rights | |
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
copies of the Software, and to permit persons to whom the Software is | |
furnished to do so, subject to the following conditions: | |
The above copyright notice and this permission notice shall be included in all | |
copies or substantial portions of the Software. | |
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | |
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | |
SOFTWARE. | |
''' | |
import os | |
import cv2 | |
import torch | |
import numpy as np | |
import torch.nn as nn | |
from einops import rearrange | |
from .utils import load_file_from_url | |
norm_layer = nn.InstanceNorm2d | |
class ResidualBlock(nn.Module): | |
def __init__(self, in_features): | |
super(ResidualBlock, self).__init__() | |
conv_block = [ nn.ReflectionPad2d(1), | |
nn.Conv2d(in_features, in_features, 3), | |
norm_layer(in_features), | |
nn.ReLU(inplace=True), | |
nn.ReflectionPad2d(1), | |
nn.Conv2d(in_features, in_features, 3), | |
norm_layer(in_features) | |
] | |
self.conv_block = nn.Sequential(*conv_block) | |
def forward(self, x): | |
return x + self.conv_block(x) | |
class Generator(nn.Module): | |
def __init__(self, input_nc, output_nc, n_residual_blocks=9, sigmoid=True): | |
super(Generator, self).__init__() | |
# Initial convolution block | |
model0 = [ nn.ReflectionPad2d(3), | |
nn.Conv2d(input_nc, 64, 7), | |
norm_layer(64), | |
nn.ReLU(inplace=True) ] | |
self.model0 = nn.Sequential(*model0) | |
# Downsampling | |
model1 = [] | |
in_features = 64 | |
out_features = in_features*2 | |
for _ in range(2): | |
model1 += [ nn.Conv2d(in_features, out_features, 3, stride=2, padding=1), | |
norm_layer(out_features), | |
nn.ReLU(inplace=True) ] | |
in_features = out_features | |
out_features = in_features*2 | |
self.model1 = nn.Sequential(*model1) | |
model2 = [] | |
# Residual blocks | |
for _ in range(n_residual_blocks): | |
model2 += [ResidualBlock(in_features)] | |
self.model2 = nn.Sequential(*model2) | |
# Upsampling | |
model3 = [] | |
out_features = in_features//2 | |
for _ in range(2): | |
model3 += [ nn.ConvTranspose2d(in_features, out_features, 3, stride=2, padding=1, output_padding=1), | |
norm_layer(out_features), | |
nn.ReLU(inplace=True) ] | |
in_features = out_features | |
out_features = in_features//2 | |
self.model3 = nn.Sequential(*model3) | |
# Output layer | |
model4 = [ nn.ReflectionPad2d(3), | |
nn.Conv2d(64, output_nc, 7)] | |
if sigmoid: | |
model4 += [nn.Sigmoid()] | |
self.model4 = nn.Sequential(*model4) | |
def forward(self, x, cond=None): | |
out = self.model0(x) | |
out = self.model1(out) | |
out = self.model2(out) | |
out = self.model3(out) | |
out = self.model4(out) | |
return out | |
class LineartDetector: | |
def __init__(self, model_path="hf_download"): | |
self.model = self.load_model('sk_model.pth', model_path) | |
self.model_coarse = self.load_model('sk_model2.pth', model_path) | |
def load_model(self, name, model_path="hf_download"): | |
remote_model_path = "https://huggingface.co/lllyasviel/Annotators/resolve/main/" + name | |
modelpath = os.path.join(model_path, name) | |
if not os.path.exists(modelpath): | |
load_file_from_url(remote_model_path, model_dir=model_path) | |
model = Generator(3, 1, 3) | |
model.load_state_dict(torch.load(modelpath, map_location=torch.device('cpu'))) | |
model.eval() | |
model = model.cuda() | |
return model | |
def __call__(self, input_image, coarse=False): | |
model = self.model_coarse if coarse else self.model | |
assert input_image.ndim == 3 | |
image = input_image | |
with torch.no_grad(): | |
image = torch.from_numpy(image).float().cuda() | |
image = image / 255.0 | |
image = rearrange(image, 'h w c -> 1 c h w') | |
line = model(image)[0][0] | |
line = line.cpu().numpy() | |
line = (line * 255.0).clip(0, 255).astype(np.uint8) | |
return line |