Spaces:
Running
on
Zero
Running
on
Zero
Kohaku-Blueleaf
commited on
Commit
·
7d4afe8
1
Parent(s):
9df83e1
first commit
Browse files- app.py +152 -0
- diff.py +107 -0
- dtg.py +92 -0
- meta.py +37 -0
- requirements.txt +7 -0
app.py
ADDED
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
from time import time_ns
|
3 |
+
|
4 |
+
import torch
|
5 |
+
|
6 |
+
import spaces
|
7 |
+
import gradio as gr
|
8 |
+
from transformers import set_seed
|
9 |
+
|
10 |
+
from kgen import models
|
11 |
+
from diff import load_model, encode_prompts
|
12 |
+
from dtg import process
|
13 |
+
from meta import (
|
14 |
+
DEFAULT_STYLE_LIST,
|
15 |
+
MODEL_FORMAT_LIST,
|
16 |
+
MODEL_DEFAULT_QUALITY_LIST,
|
17 |
+
DEFAULT_NEGATIVE_PROMPT,
|
18 |
+
)
|
19 |
+
|
20 |
+
|
21 |
+
sdxl_pipe = load_model(model_id="KBlueLeaf/Kohaku-XL-Epsilon", device="cuda")
|
22 |
+
models.load_model(models.model_list[0])
|
23 |
+
models.text_model.cuda()
|
24 |
+
|
25 |
+
current_dtg_model = models.model_list[0]
|
26 |
+
current_sdxl_model = "KBlueLeaf/Kohaku-XL-Epsilon"
|
27 |
+
|
28 |
+
|
29 |
+
@spaces.GPU
|
30 |
+
def gen(
|
31 |
+
sdxl_model: str,
|
32 |
+
dtg_model: str,
|
33 |
+
style: str,
|
34 |
+
base_prompt: str,
|
35 |
+
addon_prompt: str = "",
|
36 |
+
):
|
37 |
+
global current_dtg_model, current_sdxl_model, sdxl_pipe
|
38 |
+
if sdxl_model != current_sdxl_model:
|
39 |
+
sdxl_pipe = load_model(model_id=sdxl_model, device="cuda")
|
40 |
+
current_sdxl_model = sdxl_model
|
41 |
+
if dtg_model != current_dtg_model:
|
42 |
+
models.load_model(dtg_model)
|
43 |
+
models.text_model.cuda()
|
44 |
+
current_dtg_model = dtg_model
|
45 |
+
|
46 |
+
t0 = time_ns()
|
47 |
+
seed = random.randint(0, 2**31 - 1)
|
48 |
+
|
49 |
+
prompt = (
|
50 |
+
f"{base_prompt}, {addon_prompt}, "
|
51 |
+
f"{DEFAULT_STYLE_LIST[style]}, "
|
52 |
+
f"{MODEL_DEFAULT_QUALITY_LIST[sdxl_model]}, "
|
53 |
+
)
|
54 |
+
full_prompt = process(
|
55 |
+
prompt,
|
56 |
+
aspect_ratio=1.0,
|
57 |
+
seed=seed,
|
58 |
+
tag_length="short",
|
59 |
+
ban_tags=".*alternate.*, character doll, multiple.*, .*cosplay.*, .*name, .*text.*",
|
60 |
+
format=MODEL_FORMAT_LIST[sdxl_model],
|
61 |
+
temperature=1.2,
|
62 |
+
)
|
63 |
+
torch.cuda.empty_cache()
|
64 |
+
|
65 |
+
prompt_embeds, negative_prompt_embeds, pooled_embeds2, neg_pooled_embeds2 = (
|
66 |
+
encode_prompts(sdxl_pipe, full_prompt, DEFAULT_NEGATIVE_PROMPT)
|
67 |
+
)
|
68 |
+
set_seed(seed)
|
69 |
+
with torch.autocast("cuda"):
|
70 |
+
result = sdxl_pipe(
|
71 |
+
prompt_embeds=prompt_embeds,
|
72 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
73 |
+
pooled_prompt_embeds=pooled_embeds2,
|
74 |
+
negative_pooled_prompt_embeds=neg_pooled_embeds2,
|
75 |
+
num_inference_steps=24,
|
76 |
+
width=1024,
|
77 |
+
height=1024,
|
78 |
+
guidance_scale=6.0,
|
79 |
+
).images[0]
|
80 |
+
torch.cuda.empty_cache()
|
81 |
+
t1 = time_ns()
|
82 |
+
|
83 |
+
return result.convert("RGB"), full_prompt, f"Cost: {(t1 - t0) / 1e9:.2}sec"
|
84 |
+
|
85 |
+
|
86 |
+
if __name__ == "__main__":
|
87 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
88 |
+
gr.Markdown("""# This Cute Dragon Girl Doesn't Exist""")
|
89 |
+
with gr.Accordion("Introduction and Instructions", open=False):
|
90 |
+
gr.Markdown(
|
91 |
+
"""
|
92 |
+
### What is this:
|
93 |
+
"This Cute Dragon Girl Doesn't Exist" is a Demo for KGen System(DanTagGen) with SDXL anime models.
|
94 |
+
It is aimed to show how the DanTagGen can be used to "refine/upsample" simple prompt to help the T2I model.
|
95 |
+
|
96 |
+
Since I already have some application and demo on DanTagGen.
|
97 |
+
This demo is designed to be more "simple" than before.
|
98 |
+
|
99 |
+
Just one click, and get the result with high quality and high diversity.
|
100 |
+
|
101 |
+
### How to use it:
|
102 |
+
click "Next" button until you get the dragon girl you like.
|
103 |
+
|
104 |
+
### Resources:
|
105 |
+
- My anime model: [Kohaku XL Epsilon](https://huggingface.co/KBlueLeaf/Kohaku-XL-Epsilon)
|
106 |
+
- DanTagGen: [DanTagGen](https://huggingface.co/KBlueLeaf/DanTagGen-beta)
|
107 |
+
- DanTagGen extension: [z-a1111-sd-webui-dtg](https://github.com/KohakuBlueleaf/z-a1111-sd-webui-dtg)
|
108 |
+
"""
|
109 |
+
)
|
110 |
+
with gr.Row():
|
111 |
+
with gr.Column(scale=3):
|
112 |
+
with gr.Row():
|
113 |
+
sdxl_model = gr.Dropdown(
|
114 |
+
MODEL_FORMAT_LIST,
|
115 |
+
label="SDXL Model",
|
116 |
+
value=list(MODEL_FORMAT_LIST)[0],
|
117 |
+
)
|
118 |
+
dtg_model = gr.Dropdown(
|
119 |
+
models.model_list,
|
120 |
+
label="DTG Model",
|
121 |
+
value=models.model_list[0],
|
122 |
+
)
|
123 |
+
base_prompt = gr.Textbox(
|
124 |
+
label="Base prompt",
|
125 |
+
lines=1,
|
126 |
+
value="1girl, solo, dragon girl, dragon wings, dragon horns, dragon tail",
|
127 |
+
interactive=False,
|
128 |
+
)
|
129 |
+
with gr.Row():
|
130 |
+
addon_propmt = gr.Textbox(
|
131 |
+
label="Addon prompt",
|
132 |
+
lines=1,
|
133 |
+
value="cowboy shot, loli",
|
134 |
+
)
|
135 |
+
style = gr.Dropdown(
|
136 |
+
DEFAULT_STYLE_LIST,
|
137 |
+
label="Style",
|
138 |
+
value=list(DEFAULT_STYLE_LIST)[0],
|
139 |
+
)
|
140 |
+
submit = gr.Button("Next")
|
141 |
+
dtg_output = gr.TextArea(label="DTG output", lines=9, show_copy_button=True)
|
142 |
+
cost_time = gr.Markdown()
|
143 |
+
with gr.Column(scale=4):
|
144 |
+
result = gr.Image(label="Result", type="numpy", interactive=False)
|
145 |
+
|
146 |
+
submit.click(
|
147 |
+
fn=gen,
|
148 |
+
inputs=[sdxl_model, dtg_model, style, base_prompt, addon_propmt],
|
149 |
+
outputs=[result, dtg_output, cost_time],
|
150 |
+
)
|
151 |
+
|
152 |
+
demo.launch()
|
diff.py
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from functools import partial
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from diffusers import StableDiffusionXLKDiffusionPipeline
|
5 |
+
from k_diffusion.sampling import get_sigmas_polyexponential
|
6 |
+
from k_diffusion.sampling import sample_dpmpp_2m_sde
|
7 |
+
|
8 |
+
|
9 |
+
def set_timesteps_polyexponential(self, orig_sigmas, num_inference_steps, device=None):
|
10 |
+
self.num_inference_steps = num_inference_steps
|
11 |
+
|
12 |
+
self.sigmas = get_sigmas_polyexponential(
|
13 |
+
num_inference_steps + 1,
|
14 |
+
sigma_min=orig_sigmas[-2],
|
15 |
+
sigma_max=orig_sigmas[0],
|
16 |
+
rho=0.666666,
|
17 |
+
device=device or "cpu",
|
18 |
+
)
|
19 |
+
self.sigmas = torch.cat([self.sigmas[:-2], self.sigmas.new_zeros([1])])
|
20 |
+
|
21 |
+
|
22 |
+
def load_model(model_id="KBlueLeaf/Kohaku-XL-Epsilon", device="cuda"):
|
23 |
+
pipe: StableDiffusionXLKDiffusionPipeline
|
24 |
+
pipe = StableDiffusionXLKDiffusionPipeline.from_pretrained(
|
25 |
+
model_id, torch_dtype=torch.float16
|
26 |
+
).to(device)
|
27 |
+
pipe.scheduler.set_timesteps = partial(
|
28 |
+
set_timesteps_polyexponential, pipe.scheduler, pipe.scheduler.sigmas
|
29 |
+
)
|
30 |
+
pipe.sampler = partial(sample_dpmpp_2m_sde, eta=0.35, solver_type="heun")
|
31 |
+
return pipe
|
32 |
+
|
33 |
+
|
34 |
+
def encode_prompts(pipe: StableDiffusionXLKDiffusionPipeline, prompt, neg_prompt):
|
35 |
+
max_length = pipe.tokenizer.model_max_length
|
36 |
+
|
37 |
+
input_ids = pipe.tokenizer(prompt, return_tensors="pt").input_ids.to("cuda")
|
38 |
+
input_ids2 = pipe.tokenizer_2(prompt, return_tensors="pt").input_ids.to("cuda")
|
39 |
+
|
40 |
+
negative_ids = pipe.tokenizer(
|
41 |
+
neg_prompt,
|
42 |
+
truncation=False,
|
43 |
+
padding="max_length",
|
44 |
+
max_length=input_ids.shape[-1],
|
45 |
+
return_tensors="pt",
|
46 |
+
).input_ids.to("cuda")
|
47 |
+
negative_ids2 = pipe.tokenizer_2(
|
48 |
+
neg_prompt,
|
49 |
+
truncation=False,
|
50 |
+
padding="max_length",
|
51 |
+
max_length=input_ids.shape[-1],
|
52 |
+
return_tensors="pt",
|
53 |
+
).input_ids.to("cuda")
|
54 |
+
|
55 |
+
if negative_ids.size() > input_ids.size():
|
56 |
+
input_ids = pipe.tokenizer(
|
57 |
+
prompt,
|
58 |
+
truncation=False,
|
59 |
+
padding="max_length",
|
60 |
+
max_length=negative_ids.shape[-1],
|
61 |
+
return_tensors="pt",
|
62 |
+
).input_ids.to("cuda")
|
63 |
+
input_ids2 = pipe.tokenizer_2(
|
64 |
+
prompt,
|
65 |
+
truncation=False,
|
66 |
+
padding="max_length",
|
67 |
+
max_length=negative_ids.shape[-1],
|
68 |
+
return_tensors="pt",
|
69 |
+
).input_ids.to("cuda")
|
70 |
+
|
71 |
+
concat_embeds = []
|
72 |
+
neg_embeds = []
|
73 |
+
for i in range(0, input_ids.shape[-1], max_length):
|
74 |
+
concat_embeds.append(pipe.text_encoder(input_ids[:, i : i + max_length])[0])
|
75 |
+
neg_embeds.append(pipe.text_encoder(negative_ids[:, i : i + max_length])[0])
|
76 |
+
|
77 |
+
concat_embeds2 = []
|
78 |
+
neg_embeds2 = []
|
79 |
+
pooled_embeds2 = []
|
80 |
+
neg_pooled_embeds2 = []
|
81 |
+
for i in range(0, input_ids.shape[-1], max_length):
|
82 |
+
hidden_states = pipe.text_encoder_2(
|
83 |
+
input_ids2[:, i : i + max_length], output_hidden_states=True
|
84 |
+
)
|
85 |
+
concat_embeds2.append(hidden_states.hidden_states[-2])
|
86 |
+
pooled_embeds2.append(hidden_states[0])
|
87 |
+
|
88 |
+
hidden_states = pipe.text_encoder_2(
|
89 |
+
negative_ids2[:, i : i + max_length], output_hidden_states=True
|
90 |
+
)
|
91 |
+
neg_embeds2.append(hidden_states.hidden_states[-2])
|
92 |
+
neg_pooled_embeds2.append(hidden_states[0])
|
93 |
+
|
94 |
+
prompt_embeds = torch.cat(concat_embeds, dim=1)
|
95 |
+
negative_prompt_embeds = torch.cat(neg_embeds, dim=1)
|
96 |
+
prompt_embeds2 = torch.cat(concat_embeds2, dim=1)
|
97 |
+
negative_prompt_embeds2 = torch.cat(neg_embeds2, dim=1)
|
98 |
+
prompt_embeds = torch.cat([prompt_embeds, prompt_embeds2], dim=-1)
|
99 |
+
negative_prompt_embeds = torch.cat(
|
100 |
+
[negative_prompt_embeds, negative_prompt_embeds2], dim=-1
|
101 |
+
)
|
102 |
+
|
103 |
+
pooled_embeds2 = torch.mean(torch.stack(pooled_embeds2, dim=0), dim=0)
|
104 |
+
neg_pooled_embeds2 = torch.mean(torch.stack(neg_pooled_embeds2, dim=0), dim=0)
|
105 |
+
|
106 |
+
return prompt_embeds, negative_prompt_embeds, pooled_embeds2, neg_pooled_embeds2
|
107 |
+
|
dtg.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
import pathlib
|
3 |
+
|
4 |
+
import kgen.models as models
|
5 |
+
from kgen.formatter import seperate_tags, apply_format, apply_dtg_prompt
|
6 |
+
from kgen.metainfo import TARGET
|
7 |
+
from kgen.generate import tag_gen
|
8 |
+
from kgen.logging import logger
|
9 |
+
|
10 |
+
|
11 |
+
SEED_MAX = 2**31 - 1
|
12 |
+
DEFAULT_FORMAT = """<|special|>,
|
13 |
+
<|characters|>, <|copyrights|>,
|
14 |
+
<|artist|>,
|
15 |
+
|
16 |
+
<|general|>,
|
17 |
+
|
18 |
+
<|quality|>, <|meta|>, <|rating|>"""
|
19 |
+
|
20 |
+
|
21 |
+
def process(
|
22 |
+
prompt: str,
|
23 |
+
aspect_ratio: float,
|
24 |
+
seed: int,
|
25 |
+
tag_length: str,
|
26 |
+
ban_tags: str,
|
27 |
+
format: str,
|
28 |
+
temperature: float,
|
29 |
+
):
|
30 |
+
propmt_preview = prompt.replace("\n", " ")[:40]
|
31 |
+
logger.info(f"Processing propmt: {propmt_preview}...")
|
32 |
+
logger.info(f"Processing with seed: {seed}")
|
33 |
+
black_list = [tag.strip() for tag in ban_tags.split(",") if tag.strip()]
|
34 |
+
all_tags = [tag.strip() for tag in prompt.strip().split(",") if tag.strip()]
|
35 |
+
|
36 |
+
tag_length = tag_length.replace(" ", "_")
|
37 |
+
len_target = TARGET[tag_length]
|
38 |
+
|
39 |
+
tag_map = seperate_tags(all_tags)
|
40 |
+
dtg_prompt = apply_dtg_prompt(tag_map, tag_length, aspect_ratio)
|
41 |
+
for _, extra_tokens, iter_count in tag_gen(
|
42 |
+
models.text_model,
|
43 |
+
models.tokenizer,
|
44 |
+
dtg_prompt,
|
45 |
+
tag_map["special"] + tag_map["general"],
|
46 |
+
len_target,
|
47 |
+
black_list,
|
48 |
+
temperature=temperature,
|
49 |
+
top_p=0.8,
|
50 |
+
top_k=80,
|
51 |
+
max_new_tokens=512,
|
52 |
+
max_retry=10,
|
53 |
+
max_same_output=5,
|
54 |
+
seed=seed % SEED_MAX,
|
55 |
+
):
|
56 |
+
pass
|
57 |
+
tag_map["general"] += extra_tokens
|
58 |
+
prompt_by_dtg = apply_format(tag_map, format)
|
59 |
+
logger.info(
|
60 |
+
"Prompt processing done. General Tags Count: "
|
61 |
+
f"{len(tag_map['general'] + tag_map['special'])}"
|
62 |
+
f" | Total iterations: {iter_count}"
|
63 |
+
)
|
64 |
+
return prompt_by_dtg
|
65 |
+
|
66 |
+
|
67 |
+
if __name__ == "__main__":
|
68 |
+
models.model_dir = pathlib.Path(__file__).parent / "models"
|
69 |
+
|
70 |
+
file = models.download_gguf()
|
71 |
+
files = models.list_gguf()
|
72 |
+
file = files[-1]
|
73 |
+
logger.info(f"Use gguf model from local file: {file}")
|
74 |
+
models.load_model(file, gguf=True)
|
75 |
+
|
76 |
+
prompt = """
|
77 |
+
1girl, ask (askzy), masterpiece
|
78 |
+
"""
|
79 |
+
|
80 |
+
t0 = time.time_ns()
|
81 |
+
result = process(
|
82 |
+
prompt,
|
83 |
+
aspect_ratio=1.0,
|
84 |
+
seed=1,
|
85 |
+
tag_length="long",
|
86 |
+
ban_tags="",
|
87 |
+
format=DEFAULT_FORMAT,
|
88 |
+
temperature=1.35,
|
89 |
+
)
|
90 |
+
t1 = time.time_ns()
|
91 |
+
logger.info(f"Result:\n{result}")
|
92 |
+
logger.info(f"Time cost: {(t1 - t0) / 10**6:.1f}ms")
|
meta.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
DEFAULT_STYLE_LIST = {
|
2 |
+
"style 1": "ask (askzy), torino aqua, migolu",
|
3 |
+
"style 2": "azuuru, torino aqua, kedama milk, fuzichoco, ask (askzy), chen bin, atdan, hito, mignon",
|
4 |
+
"style 3": "nou (nounknown), shikimi (yurakuru), namiki itsuki, lemon89h, satsuki (miicat), chon (chon33v), omutatsu, mochizuki kei",
|
5 |
+
"style 4": "ciloranko, maccha (mochancc), lobelia (saclia), migolu, ask (askzy), wanke, jiu ye sang, rumoon, mizumi zumi",
|
6 |
+
"style 5": "reoen, alchemaniac, rella, watercolor (medium)",
|
7 |
+
"no style": "",
|
8 |
+
}
|
9 |
+
|
10 |
+
MODEL_DEFAULT_QUALITY_LIST = {
|
11 |
+
"KBlueLeaf/Kohaku-XL-Epsilon": "masterpiece, newest, absurdres, safe",
|
12 |
+
"cagliostrolab/animagine-xl-3.1": "masterpiece, newest, very aesthetic, absurdres, safe",
|
13 |
+
}
|
14 |
+
|
15 |
+
MODEL_FORMAT_LIST = {
|
16 |
+
"KBlueLeaf/Kohaku-XL-Epsilon": """<|special|>,
|
17 |
+
<|characters|>, <|copyrights|>,
|
18 |
+
<|artist|>,
|
19 |
+
|
20 |
+
<|general|>,
|
21 |
+
|
22 |
+
<|quality|>, <|meta|>, <|rating|>""",
|
23 |
+
"cagliostrolab/animagine-xl-3.1": """<|special|>,
|
24 |
+
<|characters|>, <|copyrights|>,
|
25 |
+
<|artist|>,
|
26 |
+
|
27 |
+
<|general|>,
|
28 |
+
|
29 |
+
<|quality|>, <|meta|>, <|rating|>""",
|
30 |
+
}
|
31 |
+
|
32 |
+
|
33 |
+
DEFAULT_NEGATIVE_PROMPT = """
|
34 |
+
low quality, worst quality, normal quality, text, signature, jpeg artifacts,
|
35 |
+
bad anatomy, old, early, mini skirt, nsfw, chibi, multiple girls, multiple boys,
|
36 |
+
multiple tails, multiple views, copyright name, watermark, artist name, signature
|
37 |
+
"""
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
diffusers
|
2 |
+
transformers
|
3 |
+
k_diffusion
|
4 |
+
requests
|
5 |
+
sentencepiece
|
6 |
+
tipo-kgen
|
7 |
+
spaces
|