Spaces:
Running
Running
| from enum import StrEnum, auto | |
| class Tasks(StrEnum): | |
| EXTRACTIVE_QUESTION_ANSWERING = auto() | |
| MULTIPLE_CHOICE = auto() | |
| SUMMARIZATION = auto() | |
| NATURAL_LANGUAGE_INFERENCE = auto() | |
| TEXT_CLASSIFICATION = auto() | |
| MACHINE_TRANSLATION = auto() | |
| GRAMMATICAL_ERROR_CORRECTION = auto() | |
| class Metrics(StrEnum): | |
| F1 = "f1" | |
| EXACT_MATCH = "exact_match" | |
| ROGUE1 = "rouge1" | |
| ROUGE2 = "rouge2" | |
| ROUGEL = "rougeL" | |
| ACCURACY = "acc" | |
| WER = "wer" | |
| BLEU = "bleu" | |
| DATASET_TASK_DICT = { | |
| # extractive qa | |
| 'xquad_tr': Tasks.EXTRACTIVE_QUESTION_ANSWERING, | |
| 'tquad': Tasks.EXTRACTIVE_QUESTION_ANSWERING, | |
| 'mkqa_tr': Tasks.EXTRACTIVE_QUESTION_ANSWERING, # not exactly | |
| # summarization | |
| 'xlsum_tr': Tasks.SUMMARIZATION, | |
| 'mlsum_tr': Tasks.SUMMARIZATION, | |
| 'wiki_lingua_tr': Tasks.SUMMARIZATION, | |
| 'tr-wikihow-summ': Tasks.SUMMARIZATION, | |
| # NLI | |
| #'nli_tr': Tasks.NATURAL_LANGUAGE_INFERENCE, | |
| 'mnli_tr': Tasks.NATURAL_LANGUAGE_INFERENCE, | |
| 'snli_tr': Tasks.NATURAL_LANGUAGE_INFERENCE, | |
| 'xnli_tr': Tasks.NATURAL_LANGUAGE_INFERENCE, | |
| # multiple-choice | |
| 'xcopa_tr': Tasks.MULTIPLE_CHOICE, | |
| 'exams_tr': Tasks.MULTIPLE_CHOICE, | |
| 'belebele_tr': Tasks.MULTIPLE_CHOICE, | |
| 'turkish_plu': Tasks.MULTIPLE_CHOICE, | |
| 'turkish_plu_goal_inference': Tasks.MULTIPLE_CHOICE, | |
| 'turkish_plu_next_event_prediction': Tasks.MULTIPLE_CHOICE, | |
| 'turkish_plu_step_inference': Tasks.MULTIPLE_CHOICE, | |
| 'turkish_plu_step_ordering': Tasks.MULTIPLE_CHOICE, | |
| # fact-checking, not sure whether these are multi-choice | |
| # 'trclaim19': Tasks.MULTIPLE_CHOICE, | |
| 'check_worthiness': Tasks.MULTIPLE_CHOICE, | |
| 'relevance_judgment': Tasks.MULTIPLE_CHOICE, | |
| # text classification | |
| 'sts_tr': Tasks.TEXT_CLASSIFICATION, | |
| 'offenseval_tr': Tasks.TEXT_CLASSIFICATION, | |
| 'news_cat': Tasks.TEXT_CLASSIFICATION, | |
| 'ironytr': Tasks.TEXT_CLASSIFICATION, | |
| # other generation | |
| 'wmt-tr-en-prompt': Tasks.MACHINE_TRANSLATION, | |
| 'gecturk_generation': Tasks.GRAMMATICAL_ERROR_CORRECTION, | |
| } | |
| TASK_METRIC_DICT = { | |
| Tasks.EXTRACTIVE_QUESTION_ANSWERING: Metrics.EXACT_MATCH, | |
| Tasks.MULTIPLE_CHOICE: Metrics.ACCURACY, | |
| Tasks.TEXT_CLASSIFICATION: Metrics.ACCURACY, | |
| Tasks.NATURAL_LANGUAGE_INFERENCE: Metrics.ACCURACY, | |
| Tasks.SUMMARIZATION: Metrics.ROUGE2, | |
| Tasks.MACHINE_TRANSLATION: Metrics.BLEU, | |
| Tasks.GRAMMATICAL_ERROR_CORRECTION: Metrics.EXACT_MATCH, | |
| } | |
| GENERATIVE_TASKS = ( | |
| Tasks.SUMMARIZATION, | |
| Tasks.MACHINE_TRANSLATION, | |
| Tasks.GRAMMATICAL_ERROR_CORRECTION, | |
| ) | |
| DATASET_GROUPS = { | |
| 'QA': { | |
| 'datasets': ['xquad_tr', 'tquad', 'mkqa_tr'], | |
| 'description': 'Turkish splits of SQuAD-like datasets XQuAD and TQUAD.', | |
| }, | |
| 'MCQA': { | |
| 'datasets': ['xcopa_tr', 'exams_tr', 'belebele_tr'] + [x for x in DATASET_TASK_DICT.keys() if x.startswith('turkish_plu')], | |
| 'description': 'Multiple Choice Question Answering datasets: XCOPA, Exams, Belebele and Turkish PLU.' | |
| }, | |
| 'TC': { | |
| 'datasets': ['sts_tr', 'offenseval_tr', 'news_cat', 'ironytr', ], | |
| 'description': 'Text Classification datasets.', | |
| }, | |
| 'NLI': { | |
| 'datasets': ['mnli_tr', 'snli_tr', 'xnli_tr'], | |
| 'description': 'Natural Language Inference (NLI) datasets in Turkish: XNLI, SNLI and MNLI.', | |
| }, | |
| 'SUM': { | |
| 'datasets': [name for name, task in DATASET_TASK_DICT.items() if task == Tasks.SUMMARIZATION], | |
| 'description': 'Summarization datasets in Turkish (XLSum, MLSum, WikiLingua and TrWikiHowSumm).', | |
| }, | |
| 'GEC': { | |
| 'datasets': ['gecturk_generation',], | |
| 'description': 'Grammatical Error Correction task.', | |
| }, | |
| 'MT': { | |
| 'datasets': ['wmt-tr-en-prompt'], | |
| 'description': 'Machine Translation on WMT-16 dataset (English-to-Turkish).', | |
| }, | |
| # 'TrClaim19': { | |
| # 'datasets': ['check_worthiness', 'relevance_judgment'], | |
| # 'description': 'TrClaim19 dataset for fact-checking.', | |
| # }, | |
| } | |