Update app.py
Browse files
app.py
CHANGED
@@ -1,40 +1,32 @@
|
|
1 |
import os
|
2 |
-
import torch
|
3 |
import gradio as gr
|
4 |
from PyPDF2 import PdfReader
|
5 |
-
from transformers import (
|
6 |
-
AutoTokenizer, pipeline,
|
7 |
-
AutoModelForCausalLM, AutoConfig,
|
8 |
-
BitsAndBytesConfig
|
9 |
-
)
|
10 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
11 |
from langchain_community.vectorstores import FAISS
|
12 |
from langchain.prompts import PromptTemplate
|
13 |
from langchain.chains import LLMChain
|
14 |
from langchain.embeddings import HuggingFaceEmbeddings
|
15 |
from langchain.schema import Document
|
16 |
-
from
|
17 |
-
|
18 |
-
|
19 |
|
20 |
-
api_key=os.getenv("api_key")
|
21 |
|
22 |
-
|
23 |
-
login(token=api_key)
|
24 |
-
print("login!")
|
25 |
-
except Exception as e:
|
26 |
-
print(f"Login failed: {e}")
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
|
|
|
|
|
|
32 |
|
33 |
# ------------------------------
|
34 |
-
# Embedding
|
35 |
# ------------------------------
|
36 |
modelPath = "sentence-transformers/all-mpnet-base-v2"
|
37 |
-
model_kwargs = {"device":
|
38 |
encode_kwargs = {"normalize_embedding": False}
|
39 |
|
40 |
embeddings = HuggingFaceEmbeddings(
|
@@ -44,50 +36,59 @@ embeddings = HuggingFaceEmbeddings(
|
|
44 |
)
|
45 |
|
46 |
# ------------------------------
|
47 |
-
# Load Mistral
|
48 |
# ------------------------------
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
bnb_4bit_quant_type="nf4",
|
58 |
-
bnb_4bit_use_double_quant=True,
|
59 |
-
bnb_4bit_compute_dtype=torch.float16
|
60 |
)
|
61 |
|
62 |
-
#
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
|
|
|
|
|
|
|
|
68 |
|
69 |
# ------------------------------
|
70 |
-
#
|
71 |
# ------------------------------
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
do_sample=True,
|
83 |
-
eos_token_id=tokenizer.eos_token_id,
|
84 |
-
)
|
85 |
|
86 |
-
|
87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
# ------------------------------
|
90 |
-
# PDF
|
91 |
# ------------------------------
|
92 |
def pdf_text(pdf_docs):
|
93 |
text = ""
|
@@ -101,8 +102,8 @@ def pdf_text(pdf_docs):
|
|
101 |
|
102 |
def get_chunks(text):
|
103 |
splitter = RecursiveCharacterTextSplitter(
|
104 |
-
chunk_size=
|
105 |
-
chunk_overlap=
|
106 |
length_function=len
|
107 |
)
|
108 |
chunks = splitter.split_text(text)
|
@@ -112,96 +113,50 @@ def get_vectorstore(documents):
|
|
112 |
db = FAISS.from_documents(documents, embedding=embeddings)
|
113 |
db.save_local("faiss_index")
|
114 |
|
115 |
-
|
116 |
-
#
|
117 |
-
# ------------------------------
|
118 |
-
def get_qa_prompt():
|
119 |
-
prompt_template = """<s>[INST]
|
120 |
-
You are a helpful, knowledgeable AI assistant. Answer the user's question based on the provided context.
|
121 |
-
|
122 |
-
Guidelines:
|
123 |
-
- Respond in a natural, conversational tone
|
124 |
-
- Be detailed but concise
|
125 |
-
- Use paragraphs and bullet points when appropriate
|
126 |
-
- If you don't know, say so
|
127 |
-
- Maintain a friendly and professional demeanor
|
128 |
-
|
129 |
-
Conversation History:
|
130 |
-
{chat_history}
|
131 |
-
|
132 |
-
Relevant Context:
|
133 |
-
{context}
|
134 |
-
|
135 |
-
Current Question: {question}
|
136 |
-
|
137 |
-
Provide a helpful response: [/INST]"""
|
138 |
-
|
139 |
-
return PromptTemplate(
|
140 |
-
template=prompt_template,
|
141 |
-
input_variables=["context", "question", "chat_history"]
|
142 |
-
)
|
143 |
|
144 |
-
# ------------------------------
|
145 |
-
# Chat Handling Functions
|
146 |
-
# ------------------------------
|
147 |
def handle_pdf_upload(pdf_files):
|
|
|
|
|
148 |
try:
|
149 |
-
if not pdf_files:
|
150 |
-
return "⚠️ Please upload at least one PDF file"
|
151 |
-
|
152 |
text = pdf_text(pdf_files)
|
153 |
if not text.strip():
|
154 |
-
return "⚠️ Could not extract text
|
155 |
-
|
156 |
chunks = get_chunks(text)
|
157 |
get_vectorstore(chunks)
|
158 |
-
return f"✅ Processed {len(pdf_files)} PDF(s) with {len(chunks)}
|
159 |
except Exception as e:
|
160 |
return f"❌ Error: {str(e)}"
|
161 |
|
162 |
-
def format_chat_history(chat_history):
|
163 |
-
return "\n".join([f"User: {q}\nAssistant: {a}" for q, a in chat_history[-3:]])
|
164 |
-
|
165 |
def user_query(msg, chat_history):
|
166 |
if not os.path.exists("faiss_index"):
|
167 |
-
chat_history.append((msg, "Please upload PDF documents first
|
168 |
return "", chat_history
|
169 |
-
|
170 |
try:
|
171 |
-
# Load vector store
|
172 |
db = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True)
|
173 |
-
retriever = db.as_retriever(search_kwargs={"k":
|
174 |
-
|
175 |
-
# Get relevant context
|
176 |
docs = retriever.get_relevant_documents(msg)
|
177 |
-
context = "\n\n".join([d.page_content for d in docs])
|
178 |
-
|
179 |
-
# Generate response
|
180 |
prompt = get_qa_prompt()
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
# Clean response
|
190 |
-
response = response.strip()
|
191 |
-
for end_token in ["</s>", "[INST]", "[/INST]"]:
|
192 |
-
if response.endswith(end_token):
|
193 |
-
response = response[:-len(end_token)].strip()
|
194 |
-
|
195 |
chat_history.append((msg, response))
|
196 |
return "", chat_history
|
197 |
-
|
198 |
except Exception as e:
|
199 |
error_msg = f"Sorry, I encountered an error: {str(e)}"
|
200 |
chat_history.append((msg, error_msg))
|
201 |
return "", chat_history
|
202 |
|
203 |
# ------------------------------
|
204 |
-
# Gradio Interface
|
205 |
# ------------------------------
|
206 |
with gr.Blocks(theme=gr.themes.Soft(), title="PDF Chat Assistant") as demo:
|
207 |
with gr.Row():
|
@@ -209,7 +164,7 @@ with gr.Blocks(theme=gr.themes.Soft(), title="PDF Chat Assistant") as demo:
|
|
209 |
# 📚 PDF Chat Assistant
|
210 |
### Have natural conversations with your documents
|
211 |
""")
|
212 |
-
|
213 |
with gr.Row():
|
214 |
with gr.Column(scale=1, min_width=300):
|
215 |
gr.Markdown("### Document Upload")
|
@@ -227,7 +182,7 @@ with gr.Blocks(theme=gr.themes.Soft(), title="PDF Chat Assistant") as demo:
|
|
227 |
2. Click Process Documents
|
228 |
3. Start chatting in the right panel
|
229 |
""")
|
230 |
-
|
231 |
with gr.Column(scale=2):
|
232 |
chatbot = gr.Chatbot(
|
233 |
height=600,
|
@@ -260,37 +215,10 @@ with gr.Blocks(theme=gr.themes.Soft(), title="PDF Chat Assistant") as demo:
|
|
260 |
label="Example Questions"
|
261 |
)
|
262 |
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
outputs=status_box
|
268 |
-
)
|
269 |
-
|
270 |
-
submit_btn.click(
|
271 |
-
fn=user_query,
|
272 |
-
inputs=[message, chatbot],
|
273 |
-
outputs=[message, chatbot]
|
274 |
-
)
|
275 |
-
|
276 |
-
message.submit(
|
277 |
-
fn=user_query,
|
278 |
-
inputs=[message, chatbot],
|
279 |
-
outputs=[message, chatbot]
|
280 |
-
)
|
281 |
-
|
282 |
-
clear_chat.click(
|
283 |
-
lambda: [],
|
284 |
-
None,
|
285 |
-
chatbot,
|
286 |
-
queue=False
|
287 |
-
)
|
288 |
|
289 |
-
# Launch the app
|
290 |
if __name__ == "__main__":
|
291 |
-
demo.launch(
|
292 |
-
server_name="0.0.0.0",
|
293 |
-
server_port=7861,
|
294 |
-
share=True,
|
295 |
-
debug=True
|
296 |
-
)
|
|
|
1 |
import os
|
|
|
2 |
import gradio as gr
|
3 |
from PyPDF2 import PdfReader
|
|
|
|
|
|
|
|
|
|
|
4 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
5 |
from langchain_community.vectorstores import FAISS
|
6 |
from langchain.prompts import PromptTemplate
|
7 |
from langchain.chains import LLMChain
|
8 |
from langchain.embeddings import HuggingFaceEmbeddings
|
9 |
from langchain.schema import Document
|
10 |
+
from llama_cpp import Llama
|
11 |
+
import warnings
|
12 |
+
warnings.filterwarnings("ignore")
|
13 |
|
|
|
14 |
|
15 |
+
import subprocess
|
|
|
|
|
|
|
|
|
16 |
|
17 |
+
subprocess.run([
|
18 |
+
"huggingface-cli", "download",
|
19 |
+
"TheBloke/Mistral-7B-Instruct-v0.1-GGUF",
|
20 |
+
"mistral-7b-instruct-v0.1.Q2_K.gguf",
|
21 |
+
"--local-dir", "./models",
|
22 |
+
"--local-dir-use-symlinks", "False"
|
23 |
+
], check=True)
|
24 |
|
25 |
# ------------------------------
|
26 |
+
# Device and Embedding Setup (CPU optimized)
|
27 |
# ------------------------------
|
28 |
modelPath = "sentence-transformers/all-mpnet-base-v2"
|
29 |
+
model_kwargs = {"device": "cpu"} # Force CPU usage
|
30 |
encode_kwargs = {"normalize_embedding": False}
|
31 |
|
32 |
embeddings = HuggingFaceEmbeddings(
|
|
|
36 |
)
|
37 |
|
38 |
# ------------------------------
|
39 |
+
# Load Mistral GGUF via llama.cpp (CPU optimized)
|
40 |
# ------------------------------
|
41 |
+
llm_cpp = Llama(
|
42 |
+
model_path="./models/mistral-7b-instruct-v0.1.Q2_K.gguf",
|
43 |
+
n_ctx=2048,
|
44 |
+
n_threads=4, # Adjust based on your CPU cores
|
45 |
+
n_gpu_layers=0, # Force CPU-only
|
46 |
+
temperature=0.7,
|
47 |
+
top_p=0.9,
|
48 |
+
repeat_penalty=1.1
|
|
|
|
|
|
|
49 |
)
|
50 |
|
51 |
+
# ------------------------------
|
52 |
+
# LangChain-compatible wrapper
|
53 |
+
# ------------------------------
|
54 |
+
def mistral_llm(prompt):
|
55 |
+
output = llm_cpp(
|
56 |
+
prompt,
|
57 |
+
max_tokens=512, # Reduced for CPU performance
|
58 |
+
stop=["</s>", "[INST]", "[/INST]"]
|
59 |
+
)
|
60 |
+
return output["choices"][0]["text"].strip()
|
61 |
|
62 |
# ------------------------------
|
63 |
+
# Prompt Template (unchanged)
|
64 |
# ------------------------------
|
65 |
+
def get_qa_prompt():
|
66 |
+
template = """<s>[INST] \
|
67 |
+
You are a helpful, knowledgeable AI assistant. Answer the user's question based on the provided context.
|
68 |
+
|
69 |
+
Guidelines:
|
70 |
+
- Respond in a natural, conversational tone
|
71 |
+
- Be detailed but concise
|
72 |
+
- Use paragraphs and bullet points when appropriate
|
73 |
+
- If you don't know, say so
|
74 |
+
- Maintain a friendly and professional demeanor
|
|
|
|
|
|
|
75 |
|
76 |
+
Conversation History:
|
77 |
+
{chat_history}
|
78 |
+
|
79 |
+
Relevant Context:
|
80 |
+
{context}
|
81 |
+
|
82 |
+
Current Question: {question}
|
83 |
+
|
84 |
+
Provide a helpful response: [/INST]"""
|
85 |
+
return PromptTemplate(
|
86 |
+
template=template,
|
87 |
+
input_variables=["context", "question", "chat_history"]
|
88 |
+
)
|
89 |
|
90 |
# ------------------------------
|
91 |
+
# PDF and Chat Logic (optimized for CPU)
|
92 |
# ------------------------------
|
93 |
def pdf_text(pdf_docs):
|
94 |
text = ""
|
|
|
102 |
|
103 |
def get_chunks(text):
|
104 |
splitter = RecursiveCharacterTextSplitter(
|
105 |
+
chunk_size=800, # Smaller chunks for CPU
|
106 |
+
chunk_overlap=100,
|
107 |
length_function=len
|
108 |
)
|
109 |
chunks = splitter.split_text(text)
|
|
|
113 |
db = FAISS.from_documents(documents, embedding=embeddings)
|
114 |
db.save_local("faiss_index")
|
115 |
|
116 |
+
def format_chat_history(history):
|
117 |
+
return "\n".join([f"User: {q}\nAssistant: {a}" for q, a in history[-2:]]) # Shorter history
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
|
|
|
|
|
|
|
119 |
def handle_pdf_upload(pdf_files):
|
120 |
+
if not pdf_files:
|
121 |
+
return "⚠️ Upload at least one PDF"
|
122 |
try:
|
|
|
|
|
|
|
123 |
text = pdf_text(pdf_files)
|
124 |
if not text.strip():
|
125 |
+
return "⚠️ Could not extract text"
|
|
|
126 |
chunks = get_chunks(text)
|
127 |
get_vectorstore(chunks)
|
128 |
+
return f"✅ Processed {len(pdf_files)} PDF(s) with {len(chunks)} chunks"
|
129 |
except Exception as e:
|
130 |
return f"❌ Error: {str(e)}"
|
131 |
|
|
|
|
|
|
|
132 |
def user_query(msg, chat_history):
|
133 |
if not os.path.exists("faiss_index"):
|
134 |
+
chat_history.append((msg, "Please upload PDF documents first."))
|
135 |
return "", chat_history
|
136 |
+
|
137 |
try:
|
|
|
138 |
db = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True)
|
139 |
+
retriever = db.as_retriever(search_kwargs={"k": 2}) # Fewer documents for CPU
|
|
|
|
|
140 |
docs = retriever.get_relevant_documents(msg)
|
141 |
+
context = "\n\n".join([d.page_content for d in docs][:2]) # Limit context
|
142 |
+
|
|
|
143 |
prompt = get_qa_prompt()
|
144 |
+
final_prompt = prompt.format(
|
145 |
+
context=context[:1500], # Further limit context size
|
146 |
+
question=msg,
|
147 |
+
chat_history=format_chat_history(chat_history)
|
148 |
+
)
|
149 |
+
|
150 |
+
response = mistral_llm(final_prompt)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
chat_history.append((msg, response))
|
152 |
return "", chat_history
|
|
|
153 |
except Exception as e:
|
154 |
error_msg = f"Sorry, I encountered an error: {str(e)}"
|
155 |
chat_history.append((msg, error_msg))
|
156 |
return "", chat_history
|
157 |
|
158 |
# ------------------------------
|
159 |
+
# Gradio Interface (your exact requested format)
|
160 |
# ------------------------------
|
161 |
with gr.Blocks(theme=gr.themes.Soft(), title="PDF Chat Assistant") as demo:
|
162 |
with gr.Row():
|
|
|
164 |
# 📚 PDF Chat Assistant
|
165 |
### Have natural conversations with your documents
|
166 |
""")
|
167 |
+
|
168 |
with gr.Row():
|
169 |
with gr.Column(scale=1, min_width=300):
|
170 |
gr.Markdown("### Document Upload")
|
|
|
182 |
2. Click Process Documents
|
183 |
3. Start chatting in the right panel
|
184 |
""")
|
185 |
+
|
186 |
with gr.Column(scale=2):
|
187 |
chatbot = gr.Chatbot(
|
188 |
height=600,
|
|
|
215 |
label="Example Questions"
|
216 |
)
|
217 |
|
218 |
+
upload_btn.click(handle_pdf_upload, inputs=pdf_input, outputs=status_box)
|
219 |
+
submit_btn.click(user_query, inputs=[message, chatbot], outputs=[message, chatbot])
|
220 |
+
message.submit(user_query, inputs=[message, chatbot], outputs=[message, chatbot])
|
221 |
+
clear_chat.click(lambda: [], None, chatbot, queue=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
222 |
|
|
|
223 |
if __name__ == "__main__":
|
224 |
+
demo.launch(server_name="0.0.0.0", server_port=7862, share=True) # Disable sharing for local CPU use
|
|
|
|
|
|
|
|
|
|