Update idea.txt
Browse files
idea.txt
CHANGED
@@ -0,0 +1,242 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
print("start1")
|
2 |
+
import os
|
3 |
+
import sys
|
4 |
+
import subprocess
|
5 |
+
import gradio as gr
|
6 |
+
from PyPDF2 import PdfReader
|
7 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
8 |
+
from langchain_community.vectorstores import FAISS
|
9 |
+
from langchain.prompts import PromptTemplate
|
10 |
+
from langchain.chains import LLMChain
|
11 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
12 |
+
from langchain.schema import Document
|
13 |
+
print("start2")
|
14 |
+
|
15 |
+
|
16 |
+
# Check if already installed to avoid reinstalling
|
17 |
+
try:
|
18 |
+
import llama_cpp
|
19 |
+
print("llama_cpp already installed.")
|
20 |
+
except ImportError:
|
21 |
+
print("Installing llama_cpp from wheel...")
|
22 |
+
subprocess.check_call([
|
23 |
+
sys.executable, "-m", "pip", "install",
|
24 |
+
"llama-cpp-python", "--no-binary", ":all:", "--force-reinstall"
|
25 |
+
])
|
26 |
+
|
27 |
+
|
28 |
+
from llama_cpp import Llama
|
29 |
+
print("start3")
|
30 |
+
import warnings
|
31 |
+
warnings.filterwarnings("ignore")
|
32 |
+
|
33 |
+
print("Start")
|
34 |
+
import subprocess
|
35 |
+
|
36 |
+
subprocess.run([
|
37 |
+
"huggingface-cli", "download",
|
38 |
+
"TheBloke/Mistral-7B-Instruct-v0.1-GGUF",
|
39 |
+
"mistral-7b-instruct-v0.1.Q2_K.gguf",
|
40 |
+
"--local-dir", "./models",
|
41 |
+
"--local-dir-use-symlinks", "False"
|
42 |
+
], check=True)
|
43 |
+
|
44 |
+
# ------------------------------
|
45 |
+
# Device and Embedding Setup (CPU optimized)
|
46 |
+
# ------------------------------
|
47 |
+
modelPath = "sentence-transformers/all-mpnet-base-v2"
|
48 |
+
model_kwargs = {"device": "cpu"} # Force CPU usage
|
49 |
+
encode_kwargs = {"normalize_embedding": False}
|
50 |
+
|
51 |
+
embeddings = HuggingFaceEmbeddings(
|
52 |
+
model_name=modelPath,
|
53 |
+
model_kwargs=model_kwargs,
|
54 |
+
encode_kwargs=encode_kwargs
|
55 |
+
)
|
56 |
+
|
57 |
+
# ------------------------------
|
58 |
+
# Load Mistral GGUF via llama.cpp (CPU optimized)
|
59 |
+
# ------------------------------
|
60 |
+
llm_cpp = Llama(
|
61 |
+
model_path="./models/mistral-7b-instruct-v0.1.Q2_K.gguf",
|
62 |
+
n_ctx=2048,
|
63 |
+
n_threads=4, # Adjust based on your CPU cores
|
64 |
+
n_gpu_layers=0, # Force CPU-only
|
65 |
+
temperature=0.7,
|
66 |
+
top_p=0.9,
|
67 |
+
repeat_penalty=1.1
|
68 |
+
)
|
69 |
+
|
70 |
+
# ------------------------------
|
71 |
+
# LangChain-compatible wrapper
|
72 |
+
# ------------------------------
|
73 |
+
def mistral_llm(prompt):
|
74 |
+
output = llm_cpp(
|
75 |
+
prompt,
|
76 |
+
max_tokens=512, # Reduced for CPU performance
|
77 |
+
stop=["</s>", "[INST]", "[/INST]"]
|
78 |
+
)
|
79 |
+
return output["choices"][0]["text"].strip()
|
80 |
+
|
81 |
+
# ------------------------------
|
82 |
+
# Prompt Template (unchanged)
|
83 |
+
# ------------------------------
|
84 |
+
def get_qa_prompt():
|
85 |
+
template = """<s>[INST] \
|
86 |
+
You are a helpful, knowledgeable AI assistant. Answer the user's question based on the provided context.
|
87 |
+
|
88 |
+
Guidelines:
|
89 |
+
- Respond in a natural, conversational tone
|
90 |
+
- Be detailed but concise
|
91 |
+
- Use paragraphs and bullet points when appropriate
|
92 |
+
- If you don't know, say so
|
93 |
+
- Maintain a friendly and professional demeanor
|
94 |
+
|
95 |
+
Conversation History:
|
96 |
+
{chat_history}
|
97 |
+
|
98 |
+
Relevant Context:
|
99 |
+
{context}
|
100 |
+
|
101 |
+
Current Question: {question}
|
102 |
+
|
103 |
+
Provide a helpful response: [/INST]"""
|
104 |
+
return PromptTemplate(
|
105 |
+
template=template,
|
106 |
+
input_variables=["context", "question", "chat_history"]
|
107 |
+
)
|
108 |
+
|
109 |
+
# ------------------------------
|
110 |
+
# PDF and Chat Logic (optimized for CPU)
|
111 |
+
# ------------------------------
|
112 |
+
def pdf_text(pdf_docs):
|
113 |
+
text = ""
|
114 |
+
for doc in pdf_docs:
|
115 |
+
reader = PdfReader(doc)
|
116 |
+
for page in reader.pages:
|
117 |
+
page_text = page.extract_text()
|
118 |
+
if page_text:
|
119 |
+
text += page_text + "\n"
|
120 |
+
return text
|
121 |
+
|
122 |
+
def get_chunks(text):
|
123 |
+
splitter = RecursiveCharacterTextSplitter(
|
124 |
+
chunk_size=800, # Smaller chunks for CPU
|
125 |
+
chunk_overlap=100,
|
126 |
+
length_function=len
|
127 |
+
)
|
128 |
+
chunks = splitter.split_text(text)
|
129 |
+
return [Document(page_content=chunk) for chunk in chunks]
|
130 |
+
|
131 |
+
def get_vectorstore(documents):
|
132 |
+
db = FAISS.from_documents(documents, embedding=embeddings)
|
133 |
+
db.save_local("faiss_index")
|
134 |
+
|
135 |
+
def format_chat_history(history):
|
136 |
+
return "\n".join([f"User: {q}\nAssistant: {a}" for q, a in history[-2:]]) # Shorter history
|
137 |
+
|
138 |
+
def handle_pdf_upload(pdf_files):
|
139 |
+
if not pdf_files:
|
140 |
+
return "⚠️ Upload at least one PDF"
|
141 |
+
try:
|
142 |
+
text = pdf_text(pdf_files)
|
143 |
+
if not text.strip():
|
144 |
+
return "⚠️ Could not extract text"
|
145 |
+
chunks = get_chunks(text)
|
146 |
+
get_vectorstore(chunks)
|
147 |
+
return f"✅ Processed {len(pdf_files)} PDF(s) with {len(chunks)} chunks"
|
148 |
+
except Exception as e:
|
149 |
+
return f"❌ Error: {str(e)}"
|
150 |
+
|
151 |
+
def user_query(msg, chat_history):
|
152 |
+
if not os.path.exists("faiss_index"):
|
153 |
+
chat_history.append((msg, "Please upload PDF documents first."))
|
154 |
+
return "", chat_history
|
155 |
+
|
156 |
+
try:
|
157 |
+
db = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True)
|
158 |
+
retriever = db.as_retriever(search_kwargs={"k": 2}) # Fewer documents for CPU
|
159 |
+
docs = retriever.get_relevant_documents(msg)
|
160 |
+
context = "\n\n".join([d.page_content for d in docs][:2]) # Limit context
|
161 |
+
|
162 |
+
prompt = get_qa_prompt()
|
163 |
+
final_prompt = prompt.format(
|
164 |
+
context=context[:1500], # Further limit context size
|
165 |
+
question=msg,
|
166 |
+
chat_history=format_chat_history(chat_history)
|
167 |
+
)
|
168 |
+
|
169 |
+
response = mistral_llm(final_prompt)
|
170 |
+
chat_history.append((msg, response))
|
171 |
+
return "", chat_history
|
172 |
+
except Exception as e:
|
173 |
+
error_msg = f"Sorry, I encountered an error: {str(e)}"
|
174 |
+
chat_history.append((msg, error_msg))
|
175 |
+
return "", chat_history
|
176 |
+
|
177 |
+
# ------------------------------
|
178 |
+
# Gradio Interface (your exact requested format)
|
179 |
+
# ------------------------------
|
180 |
+
with gr.Blocks(theme=gr.themes.Soft(), title="PDF Chat Assistant") as demo:
|
181 |
+
with gr.Row():
|
182 |
+
gr.Markdown("""
|
183 |
+
# 📚 PDF Chat Assistant
|
184 |
+
### Have natural conversations with your documents ((Note: This Space runs on CPU, so responses may take a few mins.))
|
185 |
+
""")
|
186 |
+
with gr.Row():
|
187 |
+
with gr.Column(scale=1, min_width=300):
|
188 |
+
gr.Markdown("### Document Upload")
|
189 |
+
pdf_input = gr.File(
|
190 |
+
file_types=[".pdf"],
|
191 |
+
file_count="multiple",
|
192 |
+
label="Upload PDFs",
|
193 |
+
height=100
|
194 |
+
)
|
195 |
+
upload_btn = gr.Button("Process Documents", variant="primary")
|
196 |
+
status_box = gr.Textbox(label="Status", interactive=False)
|
197 |
+
gr.Markdown("""
|
198 |
+
**Instructions:**
|
199 |
+
1. Upload PDF documents
|
200 |
+
2. Click Process Documents
|
201 |
+
3. Start chatting in the right panel
|
202 |
+
""")
|
203 |
+
|
204 |
+
with gr.Column(scale=2):
|
205 |
+
chatbot = gr.Chatbot(
|
206 |
+
height=600,
|
207 |
+
bubble_full_width=False,
|
208 |
+
avatar_images=(
|
209 |
+
"user.png",
|
210 |
+
"bot.png"
|
211 |
+
)
|
212 |
+
)
|
213 |
+
|
214 |
+
with gr.Row():
|
215 |
+
message = gr.Textbox(
|
216 |
+
placeholder="Type your question about the documents...",
|
217 |
+
show_label=False,
|
218 |
+
container=False,
|
219 |
+
scale=7,
|
220 |
+
autofocus=True
|
221 |
+
)
|
222 |
+
submit_btn = gr.Button("Send", variant="primary", scale=1)
|
223 |
+
|
224 |
+
with gr.Row():
|
225 |
+
clear_chat = gr.Button("🧹 Clear Conversation")
|
226 |
+
examples = gr.Examples(
|
227 |
+
examples=[
|
228 |
+
"Summarize the key points from the documents",
|
229 |
+
"What are the main findings?",
|
230 |
+
"Explain this in simpler terms"
|
231 |
+
],
|
232 |
+
inputs=message,
|
233 |
+
label="Example Questions"
|
234 |
+
)
|
235 |
+
|
236 |
+
upload_btn.click(handle_pdf_upload, inputs=pdf_input, outputs=status_box)
|
237 |
+
submit_btn.click(user_query, inputs=[message, chatbot], outputs=[message, chatbot])
|
238 |
+
message.submit(user_query, inputs=[message, chatbot], outputs=[message, chatbot])
|
239 |
+
clear_chat.click(lambda: [], None, chatbot, queue=False)
|
240 |
+
|
241 |
+
if __name__ == "__main__":
|
242 |
+
demo.launch() # Disable sharing for local CPU use
|