Spaces:
Running
Running
Upload RAG_using_Llama3.py.py
Browse files- RAG_using_Llama3.py.py +153 -0
RAG_using_Llama3.py.py
ADDED
|
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
"""RAG_using_Llama3.ipynb
|
| 3 |
+
|
| 4 |
+
Automatically generated by Colab.
|
| 5 |
+
|
| 6 |
+
Original file is located at
|
| 7 |
+
https://colab.research.google.com/drive/1b-ZDo3QQ-axgm804UlHu3ohZwnoXz5L1
|
| 8 |
+
|
| 9 |
+
# install dependecies
|
| 10 |
+
"""
|
| 11 |
+
|
| 12 |
+
!pip install -q datasets sentence-transformers faiss-cpu accelerate
|
| 13 |
+
|
| 14 |
+
from huggingface_hub import notebook_login
|
| 15 |
+
notebook_login()
|
| 16 |
+
|
| 17 |
+
"""# embed dataset
|
| 18 |
+
|
| 19 |
+
this is a slow procedure so you might consider saving your results
|
| 20 |
+
"""
|
| 21 |
+
|
| 22 |
+
from datasets import load_dataset
|
| 23 |
+
|
| 24 |
+
dataset = load_dataset("KarthikaRajagopal/wikipedia-2")
|
| 25 |
+
|
| 26 |
+
dataset
|
| 27 |
+
|
| 28 |
+
from sentence_transformers import SentenceTransformer
|
| 29 |
+
ST = SentenceTransformer("mixedbread-ai/mxbai-embed-large-v1")
|
| 30 |
+
|
| 31 |
+
# embed the dataset
|
| 32 |
+
def embed(batch):
|
| 33 |
+
# or you can combine multiple columns here, for example the title and the text
|
| 34 |
+
information = batch["text"]
|
| 35 |
+
return {"embeddings" : ST.encode(information)}
|
| 36 |
+
dataset = dataset.map(embed,batched=True,batch_size=16)
|
| 37 |
+
|
| 38 |
+
!pip install datasets
|
| 39 |
+
|
| 40 |
+
from datasets import load_dataset
|
| 41 |
+
|
| 42 |
+
dataset = load_dataset("KarthikaRajagopal/wikipedia-2",revision = "embedded")
|
| 43 |
+
|
| 44 |
+
# Push it to your Hugging Face repository
|
| 45 |
+
dataset.push_to_hub("KarthikaRajagopal/wikipedia-2", revision="embedded")
|
| 46 |
+
|
| 47 |
+
from datasets import load_dataset
|
| 48 |
+
|
| 49 |
+
dataset = load_dataset("KarthikaRajagopal/wikipedia-2",revision = "embedded")
|
| 50 |
+
|
| 51 |
+
data = dataset["train"]
|
| 52 |
+
data = data.add_faiss_index("embeddings") # column name that has the embeddings of the dataset
|
| 53 |
+
|
| 54 |
+
def search(query: str, k: int = 3 ):
|
| 55 |
+
"""a function that embeds a new query and returns the most probable results"""
|
| 56 |
+
embedded_query = ST.encode(query) # embed new query
|
| 57 |
+
scores, retrieved_examples = data.get_nearest_examples( # retrieve results
|
| 58 |
+
"embeddings", embedded_query, # compare our new embedded query with the dataset embeddings
|
| 59 |
+
k=k # get only top k results
|
| 60 |
+
)
|
| 61 |
+
return scores, retrieved_examples
|
| 62 |
+
|
| 63 |
+
scores , result = search("anarchy", 4 ) # search for word anarchy and get the best 4 matching values from the dataset
|
| 64 |
+
|
| 65 |
+
# the lower the better
|
| 66 |
+
scores
|
| 67 |
+
|
| 68 |
+
result['title']
|
| 69 |
+
|
| 70 |
+
print(result["text"][0])
|
| 71 |
+
|
| 72 |
+
"""# chatbot on top of the retrieved results"""
|
| 73 |
+
|
| 74 |
+
!pip install -q datasets sentence-transformers faiss-cpu accelerate bitsandbytes
|
| 75 |
+
|
| 76 |
+
from sentence_transformers import SentenceTransformer
|
| 77 |
+
ST = SentenceTransformer("mixedbread-ai/mxbai-embed-large-v1")
|
| 78 |
+
|
| 79 |
+
from datasets import load_dataset
|
| 80 |
+
|
| 81 |
+
dataset = load_dataset("KarthikaRajagopal/wikipedia-2",revision = "embedded")
|
| 82 |
+
|
| 83 |
+
data = dataset["train"]
|
| 84 |
+
data = data.add_faiss_index("embeddings") # column name that has the embeddings of the dataset
|
| 85 |
+
|
| 86 |
+
def search(query: str, k: int = 3 ):
|
| 87 |
+
"""a function that embeds a new query and returns the most probable results"""
|
| 88 |
+
embedded_query = ST.encode(query) # embed new query
|
| 89 |
+
scores, retrieved_examples = data.get_nearest_examples( # retrieve results
|
| 90 |
+
"embeddings", embedded_query, # compare our new embedded query with the dataset embeddings
|
| 91 |
+
k=k # get only top k results
|
| 92 |
+
)
|
| 93 |
+
return scores, retrieved_examples
|
| 94 |
+
|
| 95 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
| 96 |
+
import torch
|
| 97 |
+
|
| 98 |
+
model_id = "meta-llama/Meta-Llama-3-8B-Instruct"
|
| 99 |
+
|
| 100 |
+
bnb_config = BitsAndBytesConfig(
|
| 101 |
+
load_in_4bit=True, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16
|
| 102 |
+
)
|
| 103 |
+
|
| 104 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 105 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 106 |
+
model_id,
|
| 107 |
+
torch_dtype=torch.bfloat16,
|
| 108 |
+
device_map="auto",
|
| 109 |
+
quantization_config=bnb_config
|
| 110 |
+
)
|
| 111 |
+
terminators = [
|
| 112 |
+
tokenizer.eos_token_id,
|
| 113 |
+
tokenizer.convert_tokens_to_ids("<|eot_id|>")
|
| 114 |
+
]
|
| 115 |
+
|
| 116 |
+
SYS_PROMPT = """You are an assistant for answering questions.
|
| 117 |
+
You are given the extracted parts of a long document and a question. Provide a conversational answer.
|
| 118 |
+
If you don't know the answer, just say "I do not know." Don't make up an answer."""
|
| 119 |
+
|
| 120 |
+
def format_prompt(prompt,retrieved_documents,k):
|
| 121 |
+
"""using the retrieved documents we will prompt the model to generate our responses"""
|
| 122 |
+
PROMPT = f"Question:{prompt}\nContext:"
|
| 123 |
+
for idx in range(k) :
|
| 124 |
+
PROMPT+= f"{retrieved_documents['text'][idx]}\n"
|
| 125 |
+
return PROMPT
|
| 126 |
+
|
| 127 |
+
def generate(formatted_prompt):
|
| 128 |
+
formatted_prompt = formatted_prompt[:2000] # to avoid GPU OOM
|
| 129 |
+
messages = [{"role":"system","content":SYS_PROMPT},{"role":"user","content":formatted_prompt}]
|
| 130 |
+
# tell the model to generate
|
| 131 |
+
input_ids = tokenizer.apply_chat_template(
|
| 132 |
+
messages,
|
| 133 |
+
add_generation_prompt=True,
|
| 134 |
+
return_tensors="pt"
|
| 135 |
+
).to(model.device)
|
| 136 |
+
outputs = model.generate(
|
| 137 |
+
input_ids,
|
| 138 |
+
max_new_tokens=1024,
|
| 139 |
+
eos_token_id=terminators,
|
| 140 |
+
do_sample=True,
|
| 141 |
+
temperature=0.6,
|
| 142 |
+
top_p=0.9,
|
| 143 |
+
)
|
| 144 |
+
response = outputs[0][input_ids.shape[-1]:]
|
| 145 |
+
return tokenizer.decode(response, skip_special_tokens=True)
|
| 146 |
+
|
| 147 |
+
def rag_chatbot(prompt:str,k:int=2):
|
| 148 |
+
scores , retrieved_documents = search(prompt, k)
|
| 149 |
+
formatted_prompt = format_prompt(prompt,retrieved_documents,k)
|
| 150 |
+
return generate(formatted_prompt)
|
| 151 |
+
|
| 152 |
+
rag_chatbot("what's anarchy ?", k = 2)
|
| 153 |
+
|