Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import gradio as gr | |
import json | |
import logging | |
import torch | |
import copy | |
import random | |
import time | |
import requests | |
import pandas as pd | |
import spaces | |
from PIL import Image | |
from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL, AutoPipelineForImage2Image | |
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images | |
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download | |
from transformers import AutoModelForCausalLM, CLIPTokenizer, CLIPProcessor, CLIPModel, LongformerTokenizer, LongformerModel | |
from fastapi import Request | |
def get_hf_username(request): | |
"""Retrieve username from HF headers or API token.""" | |
if request: | |
print("\n===== DEBUG: Request Headers =====") | |
for key, value in request.headers.items(): | |
print(f"{key}: {value}") | |
print("==================================\n") | |
username = request.headers.get("HF-User") | |
if username: | |
return username | |
# If HF-User is missing, use Hugging Face API | |
hf_token = os.getenv("HF_TOKEN") # Set this in your Space environment | |
if hf_token: | |
response = requests.get( | |
"https://huggingface.co/api/whoami-v2", | |
headers={"Authorization": f"Bearer {hf_token}"} | |
) | |
if response.status_code == 200: | |
return response.json().get("name", "Unknown") | |
return "Unknown" | |
# Disable tokenizer parallelism | |
os.environ["TOKENIZERS_PARALLELISM"] = "false" | |
# Initialize the CLIP tokenizer and model | |
clip_tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14") | |
clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-large-patch14") | |
clip_model = CLIPModel.from_pretrained("openai/clip-vit-large-patch14") | |
# Initialize the Longformer tokenizer and model | |
longformer_tokenizer = LongformerTokenizer.from_pretrained("allenai/longformer-base-4096") | |
longformer_model = LongformerModel.from_pretrained("allenai/longformer-base-4096") | |
#Load prompts for randomization | |
df = pd.read_csv('prompts.csv', header=None) | |
prompt_values = df.values.flatten() | |
# Load LoRAs from JSON file | |
with open('loras.json', 'r') as f: | |
loras = json.load(f) | |
# Initialize the base model | |
dtype = torch.bfloat16 | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
base_model = "sayakpaul/FLUX.1-merged" | |
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device) | |
good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype).to(device) | |
# Adjust the scaling factor for the base model's output | |
scaling_factor = 0.45 # You can adjust this value as needed | |
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype, vae=taef1).to(device) | |
MAX_SEED = 2**32 - 1 | |
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe) | |
def process_input(input_text): | |
inputs = longformer_tokenizer(input_text, return_tensors="pt", padding=True, truncation=True, max_length=4096) | |
return inputs | |
# Example usage | |
input_text = "Your long prompt goes here..." | |
inputs = process_input(input_text) | |
class calculateDuration: | |
def __init__(self, activity_name=""): | |
self.activity_name = activity_name | |
def __enter__(self): | |
self.start_time = time.time() | |
return self | |
def __exit__(self, exc_type, exc_value, traceback): | |
self.end_time = time.time() | |
self.elapsed_time = self.end_time - self.start_time | |
if self.activity_name: | |
print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds") | |
else: | |
print(f"Elapsed time: {self.elapsed_time:.6f} seconds") | |
def download_file(url, directory=None): | |
if directory is None: | |
directory = os.getcwd() # Use current working directory if not specified | |
# Get the filename from the URL | |
filename = url.split('/')[-1] | |
# Full path for the downloaded file | |
filepath = os.path.join(directory, filename) | |
# Download the file | |
response = requests.get(url) | |
response.raise_for_status() # Raise an exception for bad status codes | |
# Write the content to the file | |
with open(filepath, 'wb') as file: | |
file.write(response.content) | |
return filepath | |
def update_selection(evt: gr.SelectData, selected_indices, loras_state, width, height): | |
selected_index = evt.index | |
selected_indices = selected_indices or [] | |
if selected_index in selected_indices: | |
selected_indices.remove(selected_index) | |
else: | |
if len(selected_indices) < 4: | |
selected_indices.append(selected_index) | |
else: | |
gr.Warning("You can select up to 4 LoRAs, remove one to select a new one.") | |
return gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), selected_indices, gr.update(), gr.update(), gr.update(), gr.update(), width, height, gr.update(), gr.update(), gr.update(), gr.update() | |
selected_info_1 = "Select a Celebrity as LoRA 1" | |
selected_info_2 = "Select a LoRA 2" | |
selected_info_3 = "Select a LoRA 3" | |
selected_info_4 = "Select a LoRA 4" | |
lora_scale_1 = 1.15 | |
lora_scale_2 = 1.15 | |
lora_scale_3 = 0.65 | |
lora_scale_4 = 0.65 | |
lora_image_1 = None | |
lora_image_2 = None | |
lora_image_3 = None | |
lora_image_4 = None | |
if len(selected_indices) >= 1: | |
lora1 = loras_state[selected_indices[0]] | |
selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}](https://huggingface.co/{lora1['repo']}) ✨" | |
lora_image_1 = lora1['image'] | |
if len(selected_indices) >= 2: | |
lora2 = loras_state[selected_indices[1]] | |
selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](https://huggingface.co/{lora2['repo']}) ✨" | |
lora_image_2 = lora2['image'] | |
if len(selected_indices) >= 3: | |
lora3 = loras_state[selected_indices[2]] | |
selected_info_3 = f"### LoRA 3 Selected: [{lora3['title']}](https://huggingface.co/{lora3['repo']}) ✨" | |
lora_image_3 = lora3['image'] | |
if len(selected_indices) >= 4: | |
lora4 = loras_state[selected_indices[3]] | |
selected_info_4 = f"### LoRA 4 Selected: [{lora4['title']}](https://huggingface.co/{lora4['repo']}) ✨" | |
lora_image_4 = lora4['image'] | |
if selected_indices: | |
last_selected_lora = loras_state[selected_indices[-1]] | |
new_placeholder = f"Type a prompt for {last_selected_lora['title']}" | |
else: | |
new_placeholder = "Type a prompt after selecting a LoRA" | |
return gr.update(placeholder=new_placeholder), selected_info_1, selected_info_2, selected_info_3, selected_info_4, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_scale_4, width, height, lora_image_1, lora_image_2, lora_image_3, lora_image_4 | |
def remove_lora_1(selected_indices, loras_state): | |
if len(selected_indices) >= 1: | |
selected_indices.pop(0) | |
selected_info_1 = "Select a Celebrity as LoRA 1" | |
selected_info_2 = "Select a LoRA 2" | |
selected_info_3 = "Select a LoRA 3" | |
selected_info_4 = "Select a LoRA 4" | |
lora_scale_1 = 1.15 | |
lora_scale_2 = 1.15 | |
lora_scale_3 = 0.65 | |
lora_scale_4 = 0.65 | |
lora_image_1 = None | |
lora_image_2 = None | |
lora_image_3 = None | |
lora_image_4 = None | |
if len(selected_indices) >= 1: | |
lora1 = loras_state[selected_indices[0]] | |
selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}](https://huggingface.co/{lora1['repo']}) ✨" | |
lora_image_1 = lora1['image'] | |
if len(selected_indices) >= 2: | |
lora2 = loras_state[selected_indices[1]] | |
selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](https://huggingface.co/{lora2['repo']}) ✨" | |
lora_image_2 = lora2['image'] | |
if len(selected_indices) >= 3: | |
lora3 = loras_state[selected_indices[2]] | |
selected_info_3 = f"### LoRA 3 Selected: [{lora3['title']}](https://huggingface.co/{lora3['repo']}) ✨" | |
lora_image_3 = lora3['image'] | |
if len(selected_indices) >= 4: | |
lora4 = loras_state[selected_indices[3]] | |
selected_info_4 = f"### LoRA 4 Selected: [{lora4['title']}](https://huggingface.co/{lora4['repo']}) ✨" | |
lora_image_4 = lora4['image'] | |
return selected_info_1, selected_info_2, selected_info_3, selected_info_4, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_scale_4, lora_image_1, lora_image_2, lora_image_3, lora_image_4 | |
def remove_lora_2(selected_indices, loras_state): | |
if len(selected_indices) >= 2: | |
selected_indices.pop(1) | |
selected_info_1 = "Select a Celebrity as LoRA 1" | |
selected_info_2 = "Select a LoRA 2" | |
selected_info_3 = "Select a LoRA 3" | |
selected_info_4 = "Select a LoRA 4" | |
lora_scale_1 = 1.15 | |
lora_scale_2 = 1.15 | |
lora_scale_3 = 0.65 | |
lora_scale_4 = 0.65 | |
lora_image_1 = None | |
lora_image_2 = None | |
lora_image_3 = None | |
lora_image_4 = None | |
if len(selected_indices) >= 1: | |
lora1 = loras_state[selected_indices[0]] | |
selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}](https://huggingface.co/{lora1['repo']}) ✨" | |
lora_image_1 = lora1['image'] | |
if len(selected_indices) >= 2: | |
lora2 = loras_state[selected_indices[1]] | |
selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](https://huggingface.co/{lora2['repo']}) ✨" | |
lora_image_2 = lora2['image'] | |
if len(selected_indices) >= 3: | |
lora3 = loras_state[selected_indices[2]] | |
selected_info_3 = f"### LoRA 3 Selected: [{lora3['title']}](https://huggingface.co/{lora3['repo']}) ✨" | |
lora_image_3 = lora3['image'] | |
if len(selected_indices) >= 4: | |
lora4 = loras_state[selected_indices[3]] | |
selected_info_4 = f"### LoRA 4 Selected: [{lora4['title']}](https://huggingface.co/{lora4['repo']}) ✨" | |
lora_image_4 = lora4['image'] | |
return selected_info_1, selected_info_2, selected_info_3, selected_info_4, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_scale_4, lora_image_1, lora_image_2, lora_image_3, lora_image_4 | |
def remove_lora_3(selected_indices, loras_state): | |
if len(selected_indices) >= 3: | |
selected_indices.pop(2) | |
selected_info_1 = "Select a Celebrity as LoRA 1" | |
selected_info_2 = "Select a LoRA 2" | |
selected_info_3 = "Select a LoRA 3" | |
selected_info_4 = "Select a LoRA 4" | |
lora_scale_1 = 1.15 | |
lora_scale_2 = 1.15 | |
lora_scale_3 = 0.65 | |
lora_scale_4 = 0.65 | |
lora_image_1 = None | |
lora_image_2 = None | |
lora_image_3 = None | |
lora_image_4 = None | |
if len(selected_indices) >= 1: | |
lora1 = loras_state[selected_indices[0]] | |
selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}](https://huggingface.co/{lora1['repo']}) ✨" | |
lora_image_1 = lora1['image'] | |
if len(selected_indices) >= 2: | |
lora2 = loras_state[selected_indices[1]] | |
selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](https://huggingface.co/{lora2['repo']}) ✨" | |
lora_image_2 = lora2['image'] | |
if len(selected_indices) >= 3: | |
lora3 = loras_state[selected_indices[2]] | |
selected_info_3 = f"### LoRA 3 Selected: [{lora3['title']}](https://huggingface.co/{lora3['repo']}) ✨" | |
lora_image_3 = lora3['image'] | |
if len(selected_indices) >= 4: | |
lora4 = loras_state[selected_indices[3]] | |
selected_info_4 = f"### LoRA 4 Selected: [{lora4['title']}](https://huggingface.co/{lora4['repo']}) ✨" | |
lora_image_4 = lora4['image'] | |
return selected_info_1, selected_info_2, selected_info_3, selected_info_4, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_scale_4, lora_image_1, lora_image_2, lora_image_3, lora_image_4 | |
def remove_lora_4(selected_indices, loras_state): | |
if len(selected_indices) >= 4: | |
selected_indices.pop(3) | |
selected_info_1 = "Select a Celebrity as LoRA 1" | |
selected_info_2 = "Select a LoRA 2" | |
selected_info_3 = "Select a LoRA 3" | |
selected_info_4 = "Select a LoRA 4" | |
lora_scale_1 = 1.15 | |
lora_scale_2 = 1.15 | |
lora_scale_3 = 0.65 | |
lora_scale_4 = 0.65 | |
lora_image_1 = None | |
lora_image_2 = None | |
lora_image_3 = None | |
lora_image_4 = None | |
if len(selected_indices) >= 1: | |
lora1 = loras_state[selected_indices[0]] | |
selected_info_1 = f"### Celebrity Selected: [{lora1['title']}](https://huggingface.co/{lora1['repo']}) ✨" | |
lora_image_1 = lora1['image'] | |
if len(selected_indices) >= 2: | |
lora2 = loras_state[selected_indices[1]] | |
selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](https://huggingface.co/{lora2['repo']}) ✨" | |
lora_image_2 = lora2['image'] | |
if len(selected_indices) >= 3: | |
lora3 = loras_state[selected_indices[2]] | |
selected_info_3 = f"### LoRA 3 Selected: [{lora3['title']}](https://huggingface.co/{lora3['repo']}) ✨" | |
lora_image_3 = lora3['image'] | |
if len(selected_indices) >= 4: | |
lora4 = loras_state[selected_indices[3]] | |
selected_info_4 = f"### LoRA 4 Selected: [{lora4['title']}](https://huggingface.co/{lora4['repo']}) ✨" | |
lora_image_4 = lora4['image'] | |
return selected_info_1, selected_info_2, selected_info_3, selected_info_4, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_scale_4, lora_image_1, lora_image_2, lora_image_3, lora_image_4 | |
def randomize_loras(selected_indices, loras_state): | |
if len(loras_state) < 2: | |
raise gr.Error("Not enough LoRAs to randomize.") | |
selected_indices = random.sample(range(len(loras_state)), 2) | |
lora1 = loras_state[selected_indices[0]] | |
lora2 = loras_state[selected_indices[1]] | |
selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}](https://huggingface.co/{lora1['repo']}) ✨" | |
selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](https://huggingface.co/{lora2['repo']}) ✨" | |
lora_scale_1 = 1.15 | |
lora_scale_2 = 1.15 | |
lora_image_1 = lora1['image'] | |
lora_image_2 = lora2['image'] | |
random_prompt = random.choice(prompt_values) | |
return selected_info_1, selected_info_2, selected_info_3, selected_info_4, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_scale_4, lora_image_1, lora_image_2, lora_image_3, lora_image_4, random_prompt | |
def add_custom_lora(custom_lora, selected_indices, current_loras, gallery, request: gr.Request = None): | |
if not custom_lora: | |
return current_loras, gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), selected_indices, gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update() | |
try: | |
# Retrieve user token if running in Spaces | |
user_token = request.headers.get("Authorization", "").replace("Bearer ", "") if request else None | |
# Check and load custom LoRA | |
title, repo, path, trigger_word, image = check_custom_model(custom_lora, token=user_token) | |
print(f"Loaded custom LoRA: {repo}") | |
# Check if the LoRA already exists in the current list | |
existing_item_index = next((index for (index, item) in enumerate(current_loras) if item['repo'] == repo), None) | |
if existing_item_index is None: | |
# Download if a direct .safetensors URL | |
if repo.endswith(".safetensors") and repo.startswith("http"): | |
repo = download_file(repo) | |
# Add the new LoRA | |
new_item = { | |
"image": image or "/home/user/app/custom.png", | |
"title": title, | |
"repo": repo, | |
"weights": path, | |
"trigger_word": trigger_word, | |
} | |
print(f"New LoRA: {new_item}") | |
existing_item_index = len(current_loras) | |
current_loras.append(new_item) | |
# Update gallery items | |
gallery_items = [(item["image"], item["title"]) for item in current_loras] | |
# Update selected indices | |
if len(selected_indices) < 4: | |
selected_indices.append(existing_item_index) | |
else: | |
raise gr.Error("You can select up to 4 LoRAs. Please remove one to add a new one.") | |
# Update selection info and images | |
selected_info = [f"Select a LoRA {i + 1}" for i in range(4)] | |
lora_images = [None] * 4 | |
lora_scales = [1.15, 1.15, 0.65, 0.65] | |
for idx, sel_idx in enumerate(selected_indices[:4]): | |
lora = current_loras[sel_idx] | |
selected_info[idx] = f"### LoRA {idx + 1} Selected: {lora['title']} ✨" | |
lora_images[idx] = lora.get("image") | |
print("Finished adding custom LoRA") | |
return ( | |
current_loras, | |
gr.update(value=gallery_items), | |
*selected_info, | |
selected_indices, | |
*lora_scales, | |
*lora_images, | |
) | |
except Exception as e: | |
print(e) | |
return (current_loras, gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), selected_indices, gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(),gr.update(), | |
) | |
def process_custom_lora(custom_lora, request: gr.Request): | |
# Extract user token from request headers | |
user_token = request.headers.get("Authorization", "").replace("Bearer ", "") | |
if not user_token: | |
raise gr.Error("User is not logged in. Please log in to use this feature.") | |
return check_custom_model(custom_lora, token=user_token) | |
def remove_custom_lora(selected_indices, current_loras, gallery): | |
if current_loras: | |
custom_lora_repo = current_loras[-1]['repo'] | |
# Remove from loras list | |
current_loras = current_loras[:-1] | |
# Remove from selected_indices if selected | |
custom_lora_index = len(current_loras) | |
if custom_lora_index in selected_indices: | |
selected_indices.remove(custom_lora_index) | |
# Update gallery | |
gallery_items = [(item["image"], item["title"]) for item in current_loras] | |
# Update selected_info and images | |
selected_info_1 = "Select a Celebrity as LoRA 1" | |
selected_info_2 = "Select a LoRA 2" | |
selected_info_3 = "Select a LoRA 3" | |
selected_info_4 = "Select a LoRA 4" | |
lora_scale_1 = 1.15 | |
lora_scale_2 = 1.15 | |
lora_scale_3 = 0.65 | |
lora_scale_4 = 0.65 | |
lora_image_1 = None | |
lora_image_2 = None | |
lora_image_3 = None | |
lora_image_4 = None | |
if len(selected_indices) >= 1: | |
lora1 = loras_state[selected_indices[0]] | |
selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}](https://huggingface.co/{lora1['repo']}) ✨" | |
lora_image_1 = lora1['image'] | |
if len(selected_indices) >= 2: | |
lora2 = loras_state[selected_indices[1]] | |
selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](https://huggingface.co/{lora2['repo']}) ✨" | |
lora_image_2 = lora2['image'] | |
if len(selected_indices) >= 3: | |
lora3 = loras_state[selected_indices[2]] | |
selected_info_3 = f"### LoRA 3 Selected: [{lora3['title']}](https://huggingface.co/{lora3['repo']}) ✨" | |
lora_image_3 = lora3['image'] | |
if len(selected_indices) >= 4: | |
lora4 = loras_state[selected_indices[3]] | |
selected_info_4 = f"### LoRA 4 Selected: [{lora4['title']}](https://huggingface.co/{lora4['repo']}) ✨" | |
lora_image_4 = lora4['image'] | |
return (current_loras, gr.update(value=gallery_items), selected_info_1, selected_info_2, selected_info_3, selected_info_4, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_scale_4, lora_image_1, lora_image_2, lora_image_3, lora_image_4) | |
def generate_image(prompt, steps, seed, cfg_scale, width, height, progress): | |
pipe.to("cuda") | |
generator = torch.Generator(device="cuda").manual_seed(seed) | |
with calculateDuration("Generating image"): | |
# Generate image | |
for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images( | |
prompt=prompt, | |
num_inference_steps=steps, | |
guidance_scale=cfg_scale, | |
width=width, | |
height=height, | |
generator=generator, | |
joint_attention_kwargs={"scale": 1.0}, | |
output_type="pil", | |
good_vae=good_vae, | |
): | |
# Yielding a tuple with image, seed, and a progress update | |
yield img, seed, f"Generated image {img} with seed {seed}" | |
return img | |
def run_lora(prompt, cfg_scale, steps, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_scale_4, | |
randomize_seed, seed, width, height, loras_state, progress=gr.Progress(track_tqdm=True), **kwargs): | |
request = kwargs.get("request") | |
# Extract username safely | |
username = request.headers.get("HF-User") if request else "Anonymous" | |
if not username or username == "Anonymous": | |
username = f"Guest-{request.client.host}" if request and request.client else "Unknown" | |
# Log User Info | |
print("\n" + "=" * 50) | |
print(f" User: {username} ") | |
print("=" * 50) | |
# Retrieve selected LoRAs | |
selected_loras = [loras_state[idx] for idx in selected_indices] | |
# Prepare LoRA details | |
lora_details = "\n".join( | |
[f" 🔹 LoRA {idx+1}: [{lora['title']}] (Weight: {[lora_scale_1, lora_scale_2, lora_scale_3, lora_scale_4][idx]})" | |
for idx, lora in enumerate(selected_loras)] | |
) | |
# Build the final prompt with trigger words | |
prepends, appends = [], [] | |
for lora in selected_loras: | |
trigger_word = lora.get('trigger_word', '') | |
if trigger_word: | |
if lora.get("trigger_position") == "prepend": | |
prepends.append(trigger_word) | |
else: | |
appends.append(trigger_word) | |
prompt_mash = " ".join(prepends + [prompt] + appends) | |
# Print formatted log | |
print("\n" + "=" * 50) | |
print(f" User: {username} ") | |
print("=" * 50) | |
print(f"📌 Prompt: {prompt}") | |
print(f"🎭 Selected LoRAs:\n{lora_details}") | |
print(f"\n🔀 Final Prompt: {prompt_mash}") | |
print(f"🎛️ CFG Scale: {cfg_scale} | Steps: {steps}") | |
print(f"🎲 Seed: {seed}") | |
print(f"🖼️ Image Size: {width} x {height}") | |
print("\n" + "=" * 50 + "\n") | |
# Unload previous LoRA weights | |
with calculateDuration("Unloading LoRA"): | |
pipe.unload_lora_weights() | |
# Load LoRA weights | |
lora_names, lora_weights = [], [] | |
with calculateDuration("Loading LoRA weights"): | |
for idx, lora in enumerate(selected_loras): | |
lora_name = f"lora_{idx}" | |
lora_names.append(lora_name) | |
lora_weights.append([lora_scale_1, lora_scale_2, lora_scale_3, lora_scale_4][idx]) | |
pipe.load_lora_weights( | |
lora['repo'], | |
weight_name=lora.get("weights"), | |
low_cpu_mem_usage=True, | |
adapter_name=lora_name, | |
) | |
pipe.set_adapters(lora_names, adapter_weights=lora_weights) | |
# Set random seed if required | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
# Generate image | |
print("\n🚀 Generating Image...") | |
image_generator = generate_image(prompt_mash, steps, seed, cfg_scale, width, height, progress) | |
step_counter = 0 | |
for image, seed, progress_update in image_generator: | |
step_counter += 1 | |
progress_bar = f'<div class="progress-container"><div class="progress-bar" style="--current: {step_counter}; --total: {steps};"></div></div>' | |
yield image, seed, gr.update(value=progress_bar, visible=True) | |
print("✅ Image Generation Complete!") | |
print("=" * 50 + "\n") | |
run_lora.zerogpu = False | |
def get_huggingface_safetensors(link, token=None): | |
split_link = link.split("/") | |
if len(split_link) == 2: | |
model_card = ModelCard.load(link, use_auth_token=token) | |
base_model = model_card.data.get("base_model") | |
print(f"Base model: {base_model}") | |
if base_model not in ["black-forest-labs/FLUX.1-dev", "black-forest-labs/FLUX.1-schnell"]: | |
raise Exception("Not a FLUX LoRA!") | |
image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None) | |
trigger_word = model_card.data.get("instance_prompt", "") | |
image_url = f"https://huggingface.co/{link}/resolve/main/{image_path}" if image_path else None | |
fs = HfFileSystem(token=token) | |
safetensors_name = None | |
try: | |
list_of_files = fs.ls(link, detail=False) | |
for file in list_of_files: | |
if file.endswith(".safetensors"): | |
safetensors_name = file.split("/")[-1] | |
if not image_url and file.lower().endswith((".jpg", ".jpeg", ".png", ".webp")): | |
image_elements = file.split("/") | |
image_url = f"https://huggingface.co/{link}/resolve/main/{image_elements[-1]}" | |
except Exception as e: | |
print(e) | |
raise gr.Error("Invalid Hugging Face repository with a *.safetensors LoRA") | |
if not safetensors_name: | |
raise gr.Error("No *.safetensors file found in the repository") | |
return split_link[1], link, safetensors_name, trigger_word, image_url | |
else: | |
raise gr.Error("Invalid Hugging Face repository link") | |
def check_custom_model(link, token=None): | |
if link.endswith(".safetensors"): | |
title = os.path.basename(link) | |
repo = link | |
path = None | |
trigger_word = "" | |
image_url = None | |
return title, repo, path, trigger_word, image_url | |
elif link.startswith("https://"): | |
if "huggingface.co" in link: | |
link_split = link.split("huggingface.co/") | |
return get_huggingface_safetensors(link_split[1], token=token) | |
else: | |
raise Exception("Unsupported URL") | |
else: | |
return get_huggingface_safetensors(link, token=token) | |
def update_history(new_image, history): | |
"""Updates the history gallery with the new image.""" | |
if history is None: | |
history = [] | |
history.insert(0, new_image) | |
return history | |
css = ''' | |
#gen_btn{height: 100%} | |
#title{text-align: center} | |
#title h1{font-size: 2em; display:inline-flex; align-items:center} | |
#title img{width: 100px; margin-right: 0.25em} | |
#subtitle{text-align: center; margin-top: 0.5em; font-size: 1em; color: #4f46e5;} | |
#subtitle a{color: #4f46e5; text-decoration: underline;} | |
#gallery .grid-wrap{height: 5vh} | |
#lora_list{background: var(--block-background-fill);padding: 0 1em .3em; font-size: 90%} | |
.custom_lora_card{margin-bottom: 1em} | |
.card_internal{display: flex;height: 100px;margin-top: .5em} | |
.card_internal img{margin-right: 1em} | |
.styler{--form-gap-width: 0px !important} | |
#progress{height:30px} | |
#progress .generating{display:none} | |
.progress-container {width: 100%;height: 30px;background-color: #f0f0f0;border-radius: 15px;overflow: hidden;margin-bottom: 20px} | |
.progress-bar {height: 100%;background-color: #4f46e5;width: calc(var(--current) / var(--total) * 100%);transition: width 0.5s ease-in-out} | |
#component-8, .button_total{height: 100%; align-self: stretch;} | |
#loaded_loras [data-testid="block-info"]{font-size:80%} | |
#custom_lora_structure{background: var(--block-background-fill)} | |
#custom_lora_btn{margin-top: auto;margin-bottom: 11px} | |
#random_btn{font-size: 300%} | |
#component-11{align-self: stretch;} | |
''' | |
font = [gr.themes.GoogleFont("Source Sans Pro"), "Arial", "sans-serif"] | |
with gr.Blocks(theme=gr.themes.Soft(font=font), css=css, delete_cache=(128, 256)) as app: | |
title = gr.HTML( | |
""" | |
<h1> | |
<img src="https://huggingface.co/spaces/keltezaa/Celebrity_LoRa_Mix/resolve/main/solo-traveller_16875043.png" alt="LoRA"> | |
Celebrity_LoRa_Mix | |
</h1> | |
""", | |
elem_id="title", | |
) | |
subtitle = gr.HTML( | |
""" | |
<p id="subtitle"> | |
<strong>Join me on Discord and share your work, comment, and requests.<br></strong> | |
<a href="https://discord.gg/X2VDEufT" target="_blank">https://discord.gg/X2VDEufT</a> | |
</p> | |
""" | |
) | |
loras_state = gr.State(loras) | |
selected_indices = gr.State([]) | |
trigger_word_display = gr.Markdown("", elem_id="trigger_word") | |
with gr.Row(): | |
with gr.Column(scale=3): | |
prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Type a prompt after selecting a LoRA") | |
with gr.Row(elem_id="loaded_loras"): | |
with gr.Column(scale=8): | |
with gr.Row(): | |
with gr.Column(scale=0, min_width=50): | |
lora_image_1 = gr.Image(label="LoRA 1 Image", interactive=False, width=50, show_label=False, show_share_button=False, show_download_button=False, show_fullscreen_button=False, height=50) | |
with gr.Column(scale=3, min_width=100): | |
selected_info_1 = gr.Markdown("Select a LoRA 1") | |
with gr.Column(scale=5, min_width=50): | |
lora_scale_1 = gr.Slider(label="LoRA 1 Scale", minimum=0, maximum=3, step=0.05, value=0.5) | |
with gr.Row(): | |
remove_button_1 = gr.Button("Remove", size="sm") | |
with gr.Column(scale=8): | |
with gr.Row(): | |
with gr.Column(scale=0, min_width=50): | |
lora_image_2 = gr.Image(label="LoRA 2 Image", interactive=False, width=50, show_label=False, show_share_button=False, show_download_button=False, show_fullscreen_button=False, height=50) | |
with gr.Column(scale=3, min_width=100): | |
selected_info_2 = gr.Markdown("Select a LoRA 2") | |
with gr.Column(scale=5, min_width=50): | |
lora_scale_2 = gr.Slider(label="LoRA 2 Scale", minimum=0, maximum=3, step=0.05, value=0.5) | |
with gr.Row(): | |
remove_button_2 = gr.Button("Remove", size="sm") | |
with gr.Column(scale=1,min_width=50): | |
randomize_button = gr.Button("🎲", variant="secondary", scale=1, elem_id="random_btn") | |
with gr.Row(elem_id="loaded_loras"): | |
with gr.Column(scale=8): | |
with gr.Row(): | |
with gr.Column(scale=0, min_width=50): | |
lora_image_3 = gr.Image(label="LoRA 3 Image", interactive=False, width=50, show_label=False, show_share_button=False, show_download_button=False, show_fullscreen_button=False, height=50) | |
with gr.Column(scale=3, min_width=100): | |
selected_info_3 = gr.Markdown("Select a LoRA 3") | |
with gr.Column(scale=5, min_width=50): | |
lora_scale_3 = gr.Slider(label="LoRA 3 Scale", minimum=0, maximum=3, step=0.05, value=0.5) | |
with gr.Row(): | |
remove_button_3 = gr.Button("Remove", size="sm") | |
with gr.Column(scale=8): | |
with gr.Row(): | |
with gr.Column(scale=0, min_width=50): | |
lora_image_4 = gr.Image(label="LoRA 4 Image", interactive=False, width=50, show_label=False, show_share_button=False, show_download_button=False, show_fullscreen_button=False, height=50) | |
with gr.Column(scale=3, min_width=100): | |
selected_info_4 = gr.Markdown("Select a LoRA 4") | |
with gr.Column(scale=5, min_width=150): | |
lora_scale_4 = gr.Slider(label="LoRA 4 Scale", minimum=0, maximum=3, step=0.05, value=0.5) | |
with gr.Row(): | |
remove_button_4 = gr.Button("Remove", size="sm") | |
with gr.Row(): | |
with gr.Accordion("Advanced Settings", open=True): | |
#with gr.Row(): | |
# input_image = gr.Image(label="Input image", type="filepath", show_share_button=False) | |
# image_strength = gr.Slider(label="Denoise Strength", info="Lower means more image influence", minimum=0.1, maximum=1.0, step=0.01, value=0.75) | |
with gr.Column(): | |
with gr.Row(): | |
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=7.5) | |
steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=28) | |
with gr.Row(): | |
width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=768) | |
height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024) | |
with gr.Row(): | |
randomize_seed = gr.Checkbox(True, label="Randomize seed") | |
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True) | |
with gr.Row(): | |
with gr.Column(scale=3): | |
generate_button = gr.Button("Generate", variant="primary", elem_classes=["button_total"]) | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Group(): | |
with gr.Row(elem_id="custom_lora_structure"): | |
custom_lora = gr.Textbox(label="Custom LoRA", info="LoRA Hugging Face path or *.safetensors public URL", placeholder="multimodalart/vintage-ads-flux", scale=3, min_width=150) | |
add_custom_lora_button = gr.Button("Add Custom LoRA", elem_id="custom_lora_btn", scale=2, min_width=150) | |
remove_custom_lora_button = gr.Button("Remove Custom LoRA", visible=False) | |
gr.Markdown("[Check the list of FLUX LoRAs](https://huggingface.co/models?other=base_model:adapter:black-forest-labs/FLUX.1-dev)", elem_id="lora_list") | |
gallery = gr.Gallery( | |
[(item["image"], item["title"]) for item in loras], | |
label="Or pick from the gallery", | |
allow_preview=False, | |
columns=5, | |
elem_id="gallery", | |
show_share_button=False, | |
interactive=False | |
) | |
with gr.Column(): | |
progress_bar = gr.Markdown(elem_id="progress", visible=False) | |
result = gr.Image(label="Generated Image", interactive=False, show_share_button=False) | |
# with gr.Accordion("History", open=False): | |
# history_gallery = gr.Gallery(label="History", columns=6, object_fit="contain", interactive=False) | |
gallery.select( | |
update_selection, | |
inputs=[selected_indices, loras_state, width, height], | |
outputs=[prompt, selected_info_1, selected_info_2, selected_info_3, selected_info_4, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_scale_4, width, height, lora_image_1, lora_image_2, lora_image_3, lora_image_4]) | |
remove_button_1.click( | |
remove_lora_1, | |
inputs=[selected_indices, loras_state], | |
outputs=[selected_info_1, selected_info_2, selected_info_3, selected_info_4, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_scale_4, lora_image_1, lora_image_2, lora_image_3, lora_image_4] | |
) | |
remove_button_2.click( | |
remove_lora_2, | |
inputs=[selected_indices, loras_state], | |
outputs=[selected_info_1, selected_info_2, selected_info_3, selected_info_4, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_scale_4, lora_image_1, lora_image_2, lora_image_3, lora_image_4] | |
) | |
remove_button_3.click( | |
remove_lora_3, | |
inputs=[selected_indices, loras_state], | |
outputs=[selected_info_1, selected_info_2, selected_info_3, selected_info_4, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_scale_4, lora_image_1, lora_image_2, lora_image_3, lora_image_4] | |
) | |
remove_button_4.click( | |
remove_lora_4, | |
inputs=[selected_indices, loras_state], | |
outputs=[selected_info_1, selected_info_2, selected_info_3, selected_info_4, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_scale_4, lora_image_1, lora_image_2, lora_image_3, lora_image_4] | |
) | |
randomize_button.click( | |
randomize_loras, | |
inputs=[selected_indices, loras_state], | |
outputs=[selected_info_1, selected_info_2, selected_info_3, selected_info_4, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_scale_4, lora_image_1, lora_image_2, lora_image_3, lora_image_4, prompt] | |
) | |
add_custom_lora_button.click( | |
add_custom_lora, | |
inputs=[custom_lora, selected_indices, loras_state, gallery], | |
outputs=[loras_state, gallery, selected_info_1, selected_info_2, selected_info_3, selected_info_4, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_scale_4, lora_image_1, lora_image_2, lora_image_3, lora_image_4] | |
) | |
remove_custom_lora_button.click( | |
remove_custom_lora, | |
inputs=[selected_indices, loras_state, gallery], | |
outputs=[loras_state, gallery, selected_info_1, selected_info_2, selected_info_3, selected_info_4, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_scale_4, lora_image_1, lora_image_2, lora_image_3, lora_image_4] | |
) | |
gr.on( | |
triggers=[generate_button.click, prompt.submit], | |
fn=run_lora, | |
inputs=[prompt, cfg_scale, steps, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_scale_4, randomize_seed, seed, width, height, loras_state], | |
outputs=[result, seed, progress_bar] | |
) | |
app.queue() | |
app.launch() |