Keltezaa's picture
Update app.py
968a05f verified
import os
import gradio as gr
import json
import logging
import torch
import copy
import random
import time
import requests
import pandas as pd
import spaces
from PIL import Image
from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL, AutoPipelineForImage2Image
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download
from transformers import AutoModelForCausalLM, CLIPTokenizer, CLIPProcessor, CLIPModel, LongformerTokenizer, LongformerModel
from fastapi import Request
def get_hf_username(request):
"""Retrieve username from HF headers or API token."""
if request:
print("\n===== DEBUG: Request Headers =====")
for key, value in request.headers.items():
print(f"{key}: {value}")
print("==================================\n")
username = request.headers.get("HF-User")
if username:
return username
# If HF-User is missing, use Hugging Face API
hf_token = os.getenv("HF_TOKEN") # Set this in your Space environment
if hf_token:
response = requests.get(
"https://huggingface.co/api/whoami-v2",
headers={"Authorization": f"Bearer {hf_token}"}
)
if response.status_code == 200:
return response.json().get("name", "Unknown")
return "Unknown"
# Disable tokenizer parallelism
os.environ["TOKENIZERS_PARALLELISM"] = "false"
# Initialize the CLIP tokenizer and model
clip_tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-large-patch14")
clip_model = CLIPModel.from_pretrained("openai/clip-vit-large-patch14")
# Initialize the Longformer tokenizer and model
longformer_tokenizer = LongformerTokenizer.from_pretrained("allenai/longformer-base-4096")
longformer_model = LongformerModel.from_pretrained("allenai/longformer-base-4096")
#Load prompts for randomization
df = pd.read_csv('prompts.csv', header=None)
prompt_values = df.values.flatten()
# Load LoRAs from JSON file
with open('loras.json', 'r') as f:
loras = json.load(f)
# Initialize the base model
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
base_model = "sayakpaul/FLUX.1-merged"
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype).to(device)
# Adjust the scaling factor for the base model's output
scaling_factor = 0.45 # You can adjust this value as needed
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype, vae=taef1).to(device)
MAX_SEED = 2**32 - 1
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
def process_input(input_text):
inputs = longformer_tokenizer(input_text, return_tensors="pt", padding=True, truncation=True, max_length=4096)
return inputs
# Example usage
input_text = "Your long prompt goes here..."
inputs = process_input(input_text)
class calculateDuration:
def __init__(self, activity_name=""):
self.activity_name = activity_name
def __enter__(self):
self.start_time = time.time()
return self
def __exit__(self, exc_type, exc_value, traceback):
self.end_time = time.time()
self.elapsed_time = self.end_time - self.start_time
if self.activity_name:
print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds")
else:
print(f"Elapsed time: {self.elapsed_time:.6f} seconds")
def download_file(url, directory=None):
if directory is None:
directory = os.getcwd() # Use current working directory if not specified
# Get the filename from the URL
filename = url.split('/')[-1]
# Full path for the downloaded file
filepath = os.path.join(directory, filename)
# Download the file
response = requests.get(url)
response.raise_for_status() # Raise an exception for bad status codes
# Write the content to the file
with open(filepath, 'wb') as file:
file.write(response.content)
return filepath
def update_selection(evt: gr.SelectData, selected_indices, loras_state, width, height):
selected_index = evt.index
selected_indices = selected_indices or []
if selected_index in selected_indices:
selected_indices.remove(selected_index)
else:
if len(selected_indices) < 4:
selected_indices.append(selected_index)
else:
gr.Warning("You can select up to 4 LoRAs, remove one to select a new one.")
return gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), selected_indices, gr.update(), gr.update(), gr.update(), gr.update(), width, height, gr.update(), gr.update(), gr.update(), gr.update()
selected_info_1 = "Select a Celebrity as LoRA 1"
selected_info_2 = "Select a LoRA 2"
selected_info_3 = "Select a LoRA 3"
selected_info_4 = "Select a LoRA 4"
lora_scale_1 = 1.15
lora_scale_2 = 1.15
lora_scale_3 = 0.65
lora_scale_4 = 0.65
lora_image_1 = None
lora_image_2 = None
lora_image_3 = None
lora_image_4 = None
if len(selected_indices) >= 1:
lora1 = loras_state[selected_indices[0]]
selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}](https://huggingface.co/{lora1['repo']}) ✨"
lora_image_1 = lora1['image']
if len(selected_indices) >= 2:
lora2 = loras_state[selected_indices[1]]
selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](https://huggingface.co/{lora2['repo']}) ✨"
lora_image_2 = lora2['image']
if len(selected_indices) >= 3:
lora3 = loras_state[selected_indices[2]]
selected_info_3 = f"### LoRA 3 Selected: [{lora3['title']}](https://huggingface.co/{lora3['repo']}) ✨"
lora_image_3 = lora3['image']
if len(selected_indices) >= 4:
lora4 = loras_state[selected_indices[3]]
selected_info_4 = f"### LoRA 4 Selected: [{lora4['title']}](https://huggingface.co/{lora4['repo']}) ✨"
lora_image_4 = lora4['image']
if selected_indices:
last_selected_lora = loras_state[selected_indices[-1]]
new_placeholder = f"Type a prompt for {last_selected_lora['title']}"
else:
new_placeholder = "Type a prompt after selecting a LoRA"
return gr.update(placeholder=new_placeholder), selected_info_1, selected_info_2, selected_info_3, selected_info_4, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_scale_4, width, height, lora_image_1, lora_image_2, lora_image_3, lora_image_4
def remove_lora_1(selected_indices, loras_state):
if len(selected_indices) >= 1:
selected_indices.pop(0)
selected_info_1 = "Select a Celebrity as LoRA 1"
selected_info_2 = "Select a LoRA 2"
selected_info_3 = "Select a LoRA 3"
selected_info_4 = "Select a LoRA 4"
lora_scale_1 = 1.15
lora_scale_2 = 1.15
lora_scale_3 = 0.65
lora_scale_4 = 0.65
lora_image_1 = None
lora_image_2 = None
lora_image_3 = None
lora_image_4 = None
if len(selected_indices) >= 1:
lora1 = loras_state[selected_indices[0]]
selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}](https://huggingface.co/{lora1['repo']}) ✨"
lora_image_1 = lora1['image']
if len(selected_indices) >= 2:
lora2 = loras_state[selected_indices[1]]
selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](https://huggingface.co/{lora2['repo']}) ✨"
lora_image_2 = lora2['image']
if len(selected_indices) >= 3:
lora3 = loras_state[selected_indices[2]]
selected_info_3 = f"### LoRA 3 Selected: [{lora3['title']}](https://huggingface.co/{lora3['repo']}) ✨"
lora_image_3 = lora3['image']
if len(selected_indices) >= 4:
lora4 = loras_state[selected_indices[3]]
selected_info_4 = f"### LoRA 4 Selected: [{lora4['title']}](https://huggingface.co/{lora4['repo']}) ✨"
lora_image_4 = lora4['image']
return selected_info_1, selected_info_2, selected_info_3, selected_info_4, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_scale_4, lora_image_1, lora_image_2, lora_image_3, lora_image_4
def remove_lora_2(selected_indices, loras_state):
if len(selected_indices) >= 2:
selected_indices.pop(1)
selected_info_1 = "Select a Celebrity as LoRA 1"
selected_info_2 = "Select a LoRA 2"
selected_info_3 = "Select a LoRA 3"
selected_info_4 = "Select a LoRA 4"
lora_scale_1 = 1.15
lora_scale_2 = 1.15
lora_scale_3 = 0.65
lora_scale_4 = 0.65
lora_image_1 = None
lora_image_2 = None
lora_image_3 = None
lora_image_4 = None
if len(selected_indices) >= 1:
lora1 = loras_state[selected_indices[0]]
selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}](https://huggingface.co/{lora1['repo']}) ✨"
lora_image_1 = lora1['image']
if len(selected_indices) >= 2:
lora2 = loras_state[selected_indices[1]]
selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](https://huggingface.co/{lora2['repo']}) ✨"
lora_image_2 = lora2['image']
if len(selected_indices) >= 3:
lora3 = loras_state[selected_indices[2]]
selected_info_3 = f"### LoRA 3 Selected: [{lora3['title']}](https://huggingface.co/{lora3['repo']}) ✨"
lora_image_3 = lora3['image']
if len(selected_indices) >= 4:
lora4 = loras_state[selected_indices[3]]
selected_info_4 = f"### LoRA 4 Selected: [{lora4['title']}](https://huggingface.co/{lora4['repo']}) ✨"
lora_image_4 = lora4['image']
return selected_info_1, selected_info_2, selected_info_3, selected_info_4, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_scale_4, lora_image_1, lora_image_2, lora_image_3, lora_image_4
def remove_lora_3(selected_indices, loras_state):
if len(selected_indices) >= 3:
selected_indices.pop(2)
selected_info_1 = "Select a Celebrity as LoRA 1"
selected_info_2 = "Select a LoRA 2"
selected_info_3 = "Select a LoRA 3"
selected_info_4 = "Select a LoRA 4"
lora_scale_1 = 1.15
lora_scale_2 = 1.15
lora_scale_3 = 0.65
lora_scale_4 = 0.65
lora_image_1 = None
lora_image_2 = None
lora_image_3 = None
lora_image_4 = None
if len(selected_indices) >= 1:
lora1 = loras_state[selected_indices[0]]
selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}](https://huggingface.co/{lora1['repo']}) ✨"
lora_image_1 = lora1['image']
if len(selected_indices) >= 2:
lora2 = loras_state[selected_indices[1]]
selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](https://huggingface.co/{lora2['repo']}) ✨"
lora_image_2 = lora2['image']
if len(selected_indices) >= 3:
lora3 = loras_state[selected_indices[2]]
selected_info_3 = f"### LoRA 3 Selected: [{lora3['title']}](https://huggingface.co/{lora3['repo']}) ✨"
lora_image_3 = lora3['image']
if len(selected_indices) >= 4:
lora4 = loras_state[selected_indices[3]]
selected_info_4 = f"### LoRA 4 Selected: [{lora4['title']}](https://huggingface.co/{lora4['repo']}) ✨"
lora_image_4 = lora4['image']
return selected_info_1, selected_info_2, selected_info_3, selected_info_4, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_scale_4, lora_image_1, lora_image_2, lora_image_3, lora_image_4
def remove_lora_4(selected_indices, loras_state):
if len(selected_indices) >= 4:
selected_indices.pop(3)
selected_info_1 = "Select a Celebrity as LoRA 1"
selected_info_2 = "Select a LoRA 2"
selected_info_3 = "Select a LoRA 3"
selected_info_4 = "Select a LoRA 4"
lora_scale_1 = 1.15
lora_scale_2 = 1.15
lora_scale_3 = 0.65
lora_scale_4 = 0.65
lora_image_1 = None
lora_image_2 = None
lora_image_3 = None
lora_image_4 = None
if len(selected_indices) >= 1:
lora1 = loras_state[selected_indices[0]]
selected_info_1 = f"### Celebrity Selected: [{lora1['title']}](https://huggingface.co/{lora1['repo']}) ✨"
lora_image_1 = lora1['image']
if len(selected_indices) >= 2:
lora2 = loras_state[selected_indices[1]]
selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](https://huggingface.co/{lora2['repo']}) ✨"
lora_image_2 = lora2['image']
if len(selected_indices) >= 3:
lora3 = loras_state[selected_indices[2]]
selected_info_3 = f"### LoRA 3 Selected: [{lora3['title']}](https://huggingface.co/{lora3['repo']}) ✨"
lora_image_3 = lora3['image']
if len(selected_indices) >= 4:
lora4 = loras_state[selected_indices[3]]
selected_info_4 = f"### LoRA 4 Selected: [{lora4['title']}](https://huggingface.co/{lora4['repo']}) ✨"
lora_image_4 = lora4['image']
return selected_info_1, selected_info_2, selected_info_3, selected_info_4, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_scale_4, lora_image_1, lora_image_2, lora_image_3, lora_image_4
def randomize_loras(selected_indices, loras_state):
if len(loras_state) < 2:
raise gr.Error("Not enough LoRAs to randomize.")
selected_indices = random.sample(range(len(loras_state)), 2)
lora1 = loras_state[selected_indices[0]]
lora2 = loras_state[selected_indices[1]]
selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}](https://huggingface.co/{lora1['repo']}) ✨"
selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](https://huggingface.co/{lora2['repo']}) ✨"
lora_scale_1 = 1.15
lora_scale_2 = 1.15
lora_image_1 = lora1['image']
lora_image_2 = lora2['image']
random_prompt = random.choice(prompt_values)
return selected_info_1, selected_info_2, selected_info_3, selected_info_4, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_scale_4, lora_image_1, lora_image_2, lora_image_3, lora_image_4, random_prompt
def add_custom_lora(custom_lora, selected_indices, current_loras, gallery, request: gr.Request = None):
if not custom_lora:
return current_loras, gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), selected_indices, gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update()
try:
# Retrieve user token if running in Spaces
user_token = request.headers.get("Authorization", "").replace("Bearer ", "") if request else None
# Check and load custom LoRA
title, repo, path, trigger_word, image = check_custom_model(custom_lora, token=user_token)
print(f"Loaded custom LoRA: {repo}")
# Check if the LoRA already exists in the current list
existing_item_index = next((index for (index, item) in enumerate(current_loras) if item['repo'] == repo), None)
if existing_item_index is None:
# Download if a direct .safetensors URL
if repo.endswith(".safetensors") and repo.startswith("http"):
repo = download_file(repo)
# Add the new LoRA
new_item = {
"image": image or "/home/user/app/custom.png",
"title": title,
"repo": repo,
"weights": path,
"trigger_word": trigger_word,
}
print(f"New LoRA: {new_item}")
existing_item_index = len(current_loras)
current_loras.append(new_item)
# Update gallery items
gallery_items = [(item["image"], item["title"]) for item in current_loras]
# Update selected indices
if len(selected_indices) < 4:
selected_indices.append(existing_item_index)
else:
raise gr.Error("You can select up to 4 LoRAs. Please remove one to add a new one.")
# Update selection info and images
selected_info = [f"Select a LoRA {i + 1}" for i in range(4)]
lora_images = [None] * 4
lora_scales = [1.15, 1.15, 0.65, 0.65]
for idx, sel_idx in enumerate(selected_indices[:4]):
lora = current_loras[sel_idx]
selected_info[idx] = f"### LoRA {idx + 1} Selected: {lora['title']} ✨"
lora_images[idx] = lora.get("image")
print("Finished adding custom LoRA")
return (
current_loras,
gr.update(value=gallery_items),
*selected_info,
selected_indices,
*lora_scales,
*lora_images,
)
except Exception as e:
print(e)
return (current_loras, gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), selected_indices, gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(),gr.update(),
)
def process_custom_lora(custom_lora, request: gr.Request):
# Extract user token from request headers
user_token = request.headers.get("Authorization", "").replace("Bearer ", "")
if not user_token:
raise gr.Error("User is not logged in. Please log in to use this feature.")
return check_custom_model(custom_lora, token=user_token)
def remove_custom_lora(selected_indices, current_loras, gallery):
if current_loras:
custom_lora_repo = current_loras[-1]['repo']
# Remove from loras list
current_loras = current_loras[:-1]
# Remove from selected_indices if selected
custom_lora_index = len(current_loras)
if custom_lora_index in selected_indices:
selected_indices.remove(custom_lora_index)
# Update gallery
gallery_items = [(item["image"], item["title"]) for item in current_loras]
# Update selected_info and images
selected_info_1 = "Select a Celebrity as LoRA 1"
selected_info_2 = "Select a LoRA 2"
selected_info_3 = "Select a LoRA 3"
selected_info_4 = "Select a LoRA 4"
lora_scale_1 = 1.15
lora_scale_2 = 1.15
lora_scale_3 = 0.65
lora_scale_4 = 0.65
lora_image_1 = None
lora_image_2 = None
lora_image_3 = None
lora_image_4 = None
if len(selected_indices) >= 1:
lora1 = loras_state[selected_indices[0]]
selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}](https://huggingface.co/{lora1['repo']}) ✨"
lora_image_1 = lora1['image']
if len(selected_indices) >= 2:
lora2 = loras_state[selected_indices[1]]
selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](https://huggingface.co/{lora2['repo']}) ✨"
lora_image_2 = lora2['image']
if len(selected_indices) >= 3:
lora3 = loras_state[selected_indices[2]]
selected_info_3 = f"### LoRA 3 Selected: [{lora3['title']}](https://huggingface.co/{lora3['repo']}) ✨"
lora_image_3 = lora3['image']
if len(selected_indices) >= 4:
lora4 = loras_state[selected_indices[3]]
selected_info_4 = f"### LoRA 4 Selected: [{lora4['title']}](https://huggingface.co/{lora4['repo']}) ✨"
lora_image_4 = lora4['image']
return (current_loras, gr.update(value=gallery_items), selected_info_1, selected_info_2, selected_info_3, selected_info_4, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_scale_4, lora_image_1, lora_image_2, lora_image_3, lora_image_4)
def generate_image(prompt, steps, seed, cfg_scale, width, height, progress):
pipe.to("cuda")
generator = torch.Generator(device="cuda").manual_seed(seed)
with calculateDuration("Generating image"):
# Generate image
for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
prompt=prompt,
num_inference_steps=steps,
guidance_scale=cfg_scale,
width=width,
height=height,
generator=generator,
joint_attention_kwargs={"scale": 1.0},
output_type="pil",
good_vae=good_vae,
):
# Yielding a tuple with image, seed, and a progress update
yield img, seed, f"Generated image {img} with seed {seed}"
return img
@spaces.GPU(duration=60)
def run_lora(prompt, cfg_scale, steps, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_scale_4,
randomize_seed, seed, width, height, loras_state, progress=gr.Progress(track_tqdm=True), **kwargs):
request = kwargs.get("request")
# Extract username safely
username = request.headers.get("HF-User") if request else "Anonymous"
if not username or username == "Anonymous":
username = f"Guest-{request.client.host}" if request and request.client else "Unknown"
# Log User Info
print("\n" + "=" * 50)
print(f" User: {username} ")
print("=" * 50)
# Retrieve selected LoRAs
selected_loras = [loras_state[idx] for idx in selected_indices]
# Prepare LoRA details
lora_details = "\n".join(
[f" 🔹 LoRA {idx+1}: [{lora['title']}] (Weight: {[lora_scale_1, lora_scale_2, lora_scale_3, lora_scale_4][idx]})"
for idx, lora in enumerate(selected_loras)]
)
# Build the final prompt with trigger words
prepends, appends = [], []
for lora in selected_loras:
trigger_word = lora.get('trigger_word', '')
if trigger_word:
if lora.get("trigger_position") == "prepend":
prepends.append(trigger_word)
else:
appends.append(trigger_word)
prompt_mash = " ".join(prepends + [prompt] + appends)
# Print formatted log
print("\n" + "=" * 50)
print(f" User: {username} ")
print("=" * 50)
print(f"📌 Prompt: {prompt}")
print(f"🎭 Selected LoRAs:\n{lora_details}")
print(f"\n🔀 Final Prompt: {prompt_mash}")
print(f"🎛️ CFG Scale: {cfg_scale} | Steps: {steps}")
print(f"🎲 Seed: {seed}")
print(f"🖼️ Image Size: {width} x {height}")
print("\n" + "=" * 50 + "\n")
# Unload previous LoRA weights
with calculateDuration("Unloading LoRA"):
pipe.unload_lora_weights()
# Load LoRA weights
lora_names, lora_weights = [], []
with calculateDuration("Loading LoRA weights"):
for idx, lora in enumerate(selected_loras):
lora_name = f"lora_{idx}"
lora_names.append(lora_name)
lora_weights.append([lora_scale_1, lora_scale_2, lora_scale_3, lora_scale_4][idx])
pipe.load_lora_weights(
lora['repo'],
weight_name=lora.get("weights"),
low_cpu_mem_usage=True,
adapter_name=lora_name,
)
pipe.set_adapters(lora_names, adapter_weights=lora_weights)
# Set random seed if required
if randomize_seed:
seed = random.randint(0, MAX_SEED)
# Generate image
print("\n🚀 Generating Image...")
image_generator = generate_image(prompt_mash, steps, seed, cfg_scale, width, height, progress)
step_counter = 0
for image, seed, progress_update in image_generator:
step_counter += 1
progress_bar = f'<div class="progress-container"><div class="progress-bar" style="--current: {step_counter}; --total: {steps};"></div></div>'
yield image, seed, gr.update(value=progress_bar, visible=True)
print("✅ Image Generation Complete!")
print("=" * 50 + "\n")
run_lora.zerogpu = False
def get_huggingface_safetensors(link, token=None):
split_link = link.split("/")
if len(split_link) == 2:
model_card = ModelCard.load(link, use_auth_token=token)
base_model = model_card.data.get("base_model")
print(f"Base model: {base_model}")
if base_model not in ["black-forest-labs/FLUX.1-dev", "black-forest-labs/FLUX.1-schnell"]:
raise Exception("Not a FLUX LoRA!")
image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None)
trigger_word = model_card.data.get("instance_prompt", "")
image_url = f"https://huggingface.co/{link}/resolve/main/{image_path}" if image_path else None
fs = HfFileSystem(token=token)
safetensors_name = None
try:
list_of_files = fs.ls(link, detail=False)
for file in list_of_files:
if file.endswith(".safetensors"):
safetensors_name = file.split("/")[-1]
if not image_url and file.lower().endswith((".jpg", ".jpeg", ".png", ".webp")):
image_elements = file.split("/")
image_url = f"https://huggingface.co/{link}/resolve/main/{image_elements[-1]}"
except Exception as e:
print(e)
raise gr.Error("Invalid Hugging Face repository with a *.safetensors LoRA")
if not safetensors_name:
raise gr.Error("No *.safetensors file found in the repository")
return split_link[1], link, safetensors_name, trigger_word, image_url
else:
raise gr.Error("Invalid Hugging Face repository link")
def check_custom_model(link, token=None):
if link.endswith(".safetensors"):
title = os.path.basename(link)
repo = link
path = None
trigger_word = ""
image_url = None
return title, repo, path, trigger_word, image_url
elif link.startswith("https://"):
if "huggingface.co" in link:
link_split = link.split("huggingface.co/")
return get_huggingface_safetensors(link_split[1], token=token)
else:
raise Exception("Unsupported URL")
else:
return get_huggingface_safetensors(link, token=token)
def update_history(new_image, history):
"""Updates the history gallery with the new image."""
if history is None:
history = []
history.insert(0, new_image)
return history
css = '''
#gen_btn{height: 100%}
#title{text-align: center}
#title h1{font-size: 2em; display:inline-flex; align-items:center}
#title img{width: 100px; margin-right: 0.25em}
#subtitle{text-align: center; margin-top: 0.5em; font-size: 1em; color: #4f46e5;}
#subtitle a{color: #4f46e5; text-decoration: underline;}
#gallery .grid-wrap{height: 5vh}
#lora_list{background: var(--block-background-fill);padding: 0 1em .3em; font-size: 90%}
.custom_lora_card{margin-bottom: 1em}
.card_internal{display: flex;height: 100px;margin-top: .5em}
.card_internal img{margin-right: 1em}
.styler{--form-gap-width: 0px !important}
#progress{height:30px}
#progress .generating{display:none}
.progress-container {width: 100%;height: 30px;background-color: #f0f0f0;border-radius: 15px;overflow: hidden;margin-bottom: 20px}
.progress-bar {height: 100%;background-color: #4f46e5;width: calc(var(--current) / var(--total) * 100%);transition: width 0.5s ease-in-out}
#component-8, .button_total{height: 100%; align-self: stretch;}
#loaded_loras [data-testid="block-info"]{font-size:80%}
#custom_lora_structure{background: var(--block-background-fill)}
#custom_lora_btn{margin-top: auto;margin-bottom: 11px}
#random_btn{font-size: 300%}
#component-11{align-self: stretch;}
'''
font = [gr.themes.GoogleFont("Source Sans Pro"), "Arial", "sans-serif"]
with gr.Blocks(theme=gr.themes.Soft(font=font), css=css, delete_cache=(128, 256)) as app:
title = gr.HTML(
"""
<h1>
<img src="https://huggingface.co/spaces/keltezaa/Celebrity_LoRa_Mix/resolve/main/solo-traveller_16875043.png" alt="LoRA">
Celebrity_LoRa_Mix
</h1>
""",
elem_id="title",
)
subtitle = gr.HTML(
"""
<p id="subtitle">
<strong>Join me on Discord and share your work, comment, and requests.<br></strong>
<a href="https://discord.gg/X2VDEufT" target="_blank">https://discord.gg/X2VDEufT</a>
</p>
"""
)
loras_state = gr.State(loras)
selected_indices = gr.State([])
trigger_word_display = gr.Markdown("", elem_id="trigger_word")
with gr.Row():
with gr.Column(scale=3):
prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Type a prompt after selecting a LoRA")
with gr.Row(elem_id="loaded_loras"):
with gr.Column(scale=8):
with gr.Row():
with gr.Column(scale=0, min_width=50):
lora_image_1 = gr.Image(label="LoRA 1 Image", interactive=False, width=50, show_label=False, show_share_button=False, show_download_button=False, show_fullscreen_button=False, height=50)
with gr.Column(scale=3, min_width=100):
selected_info_1 = gr.Markdown("Select a LoRA 1")
with gr.Column(scale=5, min_width=50):
lora_scale_1 = gr.Slider(label="LoRA 1 Scale", minimum=0, maximum=3, step=0.05, value=0.5)
with gr.Row():
remove_button_1 = gr.Button("Remove", size="sm")
with gr.Column(scale=8):
with gr.Row():
with gr.Column(scale=0, min_width=50):
lora_image_2 = gr.Image(label="LoRA 2 Image", interactive=False, width=50, show_label=False, show_share_button=False, show_download_button=False, show_fullscreen_button=False, height=50)
with gr.Column(scale=3, min_width=100):
selected_info_2 = gr.Markdown("Select a LoRA 2")
with gr.Column(scale=5, min_width=50):
lora_scale_2 = gr.Slider(label="LoRA 2 Scale", minimum=0, maximum=3, step=0.05, value=0.5)
with gr.Row():
remove_button_2 = gr.Button("Remove", size="sm")
with gr.Column(scale=1,min_width=50):
randomize_button = gr.Button("🎲", variant="secondary", scale=1, elem_id="random_btn")
with gr.Row(elem_id="loaded_loras"):
with gr.Column(scale=8):
with gr.Row():
with gr.Column(scale=0, min_width=50):
lora_image_3 = gr.Image(label="LoRA 3 Image", interactive=False, width=50, show_label=False, show_share_button=False, show_download_button=False, show_fullscreen_button=False, height=50)
with gr.Column(scale=3, min_width=100):
selected_info_3 = gr.Markdown("Select a LoRA 3")
with gr.Column(scale=5, min_width=50):
lora_scale_3 = gr.Slider(label="LoRA 3 Scale", minimum=0, maximum=3, step=0.05, value=0.5)
with gr.Row():
remove_button_3 = gr.Button("Remove", size="sm")
with gr.Column(scale=8):
with gr.Row():
with gr.Column(scale=0, min_width=50):
lora_image_4 = gr.Image(label="LoRA 4 Image", interactive=False, width=50, show_label=False, show_share_button=False, show_download_button=False, show_fullscreen_button=False, height=50)
with gr.Column(scale=3, min_width=100):
selected_info_4 = gr.Markdown("Select a LoRA 4")
with gr.Column(scale=5, min_width=150):
lora_scale_4 = gr.Slider(label="LoRA 4 Scale", minimum=0, maximum=3, step=0.05, value=0.5)
with gr.Row():
remove_button_4 = gr.Button("Remove", size="sm")
with gr.Row():
with gr.Accordion("Advanced Settings", open=True):
#with gr.Row():
# input_image = gr.Image(label="Input image", type="filepath", show_share_button=False)
# image_strength = gr.Slider(label="Denoise Strength", info="Lower means more image influence", minimum=0.1, maximum=1.0, step=0.01, value=0.75)
with gr.Column():
with gr.Row():
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=7.5)
steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=28)
with gr.Row():
width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=768)
height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024)
with gr.Row():
randomize_seed = gr.Checkbox(True, label="Randomize seed")
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
with gr.Row():
with gr.Column(scale=3):
generate_button = gr.Button("Generate", variant="primary", elem_classes=["button_total"])
with gr.Row():
with gr.Column():
with gr.Group():
with gr.Row(elem_id="custom_lora_structure"):
custom_lora = gr.Textbox(label="Custom LoRA", info="LoRA Hugging Face path or *.safetensors public URL", placeholder="multimodalart/vintage-ads-flux", scale=3, min_width=150)
add_custom_lora_button = gr.Button("Add Custom LoRA", elem_id="custom_lora_btn", scale=2, min_width=150)
remove_custom_lora_button = gr.Button("Remove Custom LoRA", visible=False)
gr.Markdown("[Check the list of FLUX LoRAs](https://huggingface.co/models?other=base_model:adapter:black-forest-labs/FLUX.1-dev)", elem_id="lora_list")
gallery = gr.Gallery(
[(item["image"], item["title"]) for item in loras],
label="Or pick from the gallery",
allow_preview=False,
columns=5,
elem_id="gallery",
show_share_button=False,
interactive=False
)
with gr.Column():
progress_bar = gr.Markdown(elem_id="progress", visible=False)
result = gr.Image(label="Generated Image", interactive=False, show_share_button=False)
# with gr.Accordion("History", open=False):
# history_gallery = gr.Gallery(label="History", columns=6, object_fit="contain", interactive=False)
gallery.select(
update_selection,
inputs=[selected_indices, loras_state, width, height],
outputs=[prompt, selected_info_1, selected_info_2, selected_info_3, selected_info_4, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_scale_4, width, height, lora_image_1, lora_image_2, lora_image_3, lora_image_4])
remove_button_1.click(
remove_lora_1,
inputs=[selected_indices, loras_state],
outputs=[selected_info_1, selected_info_2, selected_info_3, selected_info_4, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_scale_4, lora_image_1, lora_image_2, lora_image_3, lora_image_4]
)
remove_button_2.click(
remove_lora_2,
inputs=[selected_indices, loras_state],
outputs=[selected_info_1, selected_info_2, selected_info_3, selected_info_4, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_scale_4, lora_image_1, lora_image_2, lora_image_3, lora_image_4]
)
remove_button_3.click(
remove_lora_3,
inputs=[selected_indices, loras_state],
outputs=[selected_info_1, selected_info_2, selected_info_3, selected_info_4, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_scale_4, lora_image_1, lora_image_2, lora_image_3, lora_image_4]
)
remove_button_4.click(
remove_lora_4,
inputs=[selected_indices, loras_state],
outputs=[selected_info_1, selected_info_2, selected_info_3, selected_info_4, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_scale_4, lora_image_1, lora_image_2, lora_image_3, lora_image_4]
)
randomize_button.click(
randomize_loras,
inputs=[selected_indices, loras_state],
outputs=[selected_info_1, selected_info_2, selected_info_3, selected_info_4, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_scale_4, lora_image_1, lora_image_2, lora_image_3, lora_image_4, prompt]
)
add_custom_lora_button.click(
add_custom_lora,
inputs=[custom_lora, selected_indices, loras_state, gallery],
outputs=[loras_state, gallery, selected_info_1, selected_info_2, selected_info_3, selected_info_4, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_scale_4, lora_image_1, lora_image_2, lora_image_3, lora_image_4]
)
remove_custom_lora_button.click(
remove_custom_lora,
inputs=[selected_indices, loras_state, gallery],
outputs=[loras_state, gallery, selected_info_1, selected_info_2, selected_info_3, selected_info_4, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_scale_4, lora_image_1, lora_image_2, lora_image_3, lora_image_4]
)
gr.on(
triggers=[generate_button.click, prompt.submit],
fn=run_lora,
inputs=[prompt, cfg_scale, steps, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_scale_4, randomize_seed, seed, width, height, loras_state],
outputs=[result, seed, progress_bar]
)
app.queue()
app.launch()