KevSun commited on
Commit
7f1709e
·
verified ·
1 Parent(s): 42ca34d

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -20
app.py CHANGED
@@ -18,7 +18,7 @@ user_input = st.text_area("Your text here:")
18
  if st.button("Predict"):
19
  if user_input:
20
  # Tokenize input text
21
- inputs = tokenizer(user_input, return_tensors="pt", padding=True, truncation=True, max_length=512)
22
 
23
  # Get predictions from the model
24
  with torch.no_grad():
@@ -26,30 +26,22 @@ if st.button("Predict"):
26
 
27
  # Extract the predictions
28
  predictions = outputs.logits.squeeze()
29
-
30
  # Convert to numpy array if necessary
31
  predicted_scores = predictions.numpy()
 
 
32
 
33
- # Apply a significant uniform reduction (e.g., reduce by 80%)
34
- reduction_factor = 0.2 # Reduce scores by 80%
35
- adjusted_scores = predicted_scores * reduction_factor
36
-
37
- # Ensure scores do not go below zero
38
- adjusted_scores = np.maximum(adjusted_scores, 0)
39
-
40
- # Normalize the scores to ensure they fall within the 0-9 range
41
- normalized_scores = (adjusted_scores / adjusted_scores.max()) * 9 # Scale to 9
42
-
43
- # Apply additional reductions to all scores
44
- additional_reduction = 1.9 # Further reduce all scores
45
- normalized_scores = np.maximum(normalized_scores - additional_reduction, 0)
46
-
47
- # Round the scores
48
- rounded_scores = np.round(normalized_scores * 2) / 2
49
 
 
 
 
 
50
  # Display the predictions
51
  labels = ["Task Achievement", "Coherence and Cohesion", "Vocabulary", "Grammar", "Overall"]
52
  for label, score in zip(labels, rounded_scores):
53
- st.write(f"{label}: {score:.1f}")
54
  else:
55
- st.write("Please enter some text to get scores.")
 
18
  if st.button("Predict"):
19
  if user_input:
20
  # Tokenize input text
21
+ inputs = tokenizer(user_input, return_tensors="pt")
22
 
23
  # Get predictions from the model
24
  with torch.no_grad():
 
26
 
27
  # Extract the predictions
28
  predictions = outputs.logits.squeeze()
29
+
30
  # Convert to numpy array if necessary
31
  predicted_scores = predictions.numpy()
32
+ #predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
33
+ #predictions = predictions[0].tolist()
34
 
35
+ # Convert predictions to a NumPy array for the calculations
36
+ #predictions_np = np.array(predictions)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37
 
38
+ # Scale the predictions
39
+ scaled_scores = 2.25 * predicted_scores - 1.25
40
+ rounded_scores = [round(score * 2) / 2 for score in scaled_scores] # Round to nearest 0.5
41
+
42
  # Display the predictions
43
  labels = ["Task Achievement", "Coherence and Cohesion", "Vocabulary", "Grammar", "Overall"]
44
  for label, score in zip(labels, rounded_scores):
45
+ st.write(f"{label}: {score:}")
46
  else:
47
+ st.write("Please enter some text to get scores.")