Spaces:
Running
Running
File size: 3,725 Bytes
e5fdf4f 2f3b32c 39f7f02 2f3b32c 39f7f02 207c35f c640ef1 2f3b32c 39f7f02 ab0e126 e5fdf4f ab0e126 39f7f02 f4dad5f 39f7f02 2f3b32c 679f566 e5fdf4f 679f566 2f3b32c 390611c ab0e126 679f566 e5fdf4f 679f566 e5fdf4f 2f3b32c 5a78105 c68088d 2f3b32c e5fdf4f 39f7f02 679f566 39f7f02 ab0e126 b986f28 ab0e126 39f7f02 ab0e126 d49facf 39f7f02 679f566 394ca4c ab0e126 e5fdf4f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 |
import streamlit as st
import edge_tts
import asyncio
import tempfile
import os
from huggingface_hub import InferenceClient
import re
from streaming_stt_nemo import Model
import torch
import random
default_lang = "en"
engines = {default_lang: Model(default_lang)}
def transcribe(audio):
lang = "en"
model = engines[lang]
text = model.stt_file(audio)[0]
return text
HF_TOKEN = os.environ.get("HF_TOKEN", None)
def client_fn(model):
if "Mixtral" in model:
return InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
elif "Llama" in model:
return InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct")
elif "Mistral" in model:
return InferenceClient("mistralai/Mistral-7B-Instruct-v0.3")
elif "Phi" in model:
return InferenceClient("microsoft/Phi-3-mini-4k-instruct")
else:
return InferenceClient("microsoft/Phi-3-mini-4k-instruct")
def randomize_seed_fn(seed: int) -> int:
seed = random.randint(0, 999999)
return seed
system_instructions1 = """
[SYSTEM] Answer as Real Jarvis JARVIS, Made by 'Tony Stark.'
Keep conversation friendly, short, clear, and concise.
Avoid unnecessary introductions and answer the user's questions directly.
Respond in a normal, conversational manner while being friendly and helpful.
[USER]
"""
def models(text, model="Mixtral 8x7B", seed=42):
seed = int(randomize_seed_fn(seed))
generator = torch.Generator().manual_seed(seed)
client = client_fn(model)
generate_kwargs = dict(
max_new_tokens=300,
seed=seed
)
formatted_prompt = system_instructions1 + text + "[JARVIS]"
stream = client.text_generation(
formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
if not response.token.text == "</s>":
output += response.token.text
return output
async def respond(audio, model, seed):
user = transcribe(audio)
reply = models(user, model, seed)
communicate = edge_tts.Communicate(reply)
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
tmp_path = tmp_file.name
await communicate.save(tmp_path)
return tmp_path
st.title("JARVIS⚡")
st.markdown("### A personal Assistant of Tony Stark for YOU")
st.markdown("### Voice Chat with your personal Assistant")
with st.form("voice_form"):
model_choice = st.selectbox("Choose a model", ['Mixtral 8x7B', 'Llama 3 8B', 'Mistral 7B v0.3', 'Phi 3 mini'], key="voice_model")
audio_file = st.file_uploader("Upload Audio", type=["wav", "mp3"], key="voice_audio")
submit_button = st.form_submit_button("Submit")
if submit_button:
if audio_file is not None:
with st.spinner("Transcribing and generating response..."):
audio_bytes = audio_file.read()
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
tmp_file.write(audio_bytes)
tmp_path = tmp_file.name
response = respond(tmp_path, model_choice, 42)
st.audio(response, format='audio/wav')
with st.form("text_form"):
model_choice = st.selectbox("Choose a model", ['Mixtral 8x7B', 'Llama 3 8B', 'Mistral 7B v0.3', 'Phi 3 mini'], key="text_model")
user_text = st.text_area("Enter your message:", key="text_input")
submit_button = st.form_submit_button("Submit")
if submit_button:
if user_text:
with st.spinner("Generating response..."):
response = models(user_text, model_choice, 42)
st.text_area("JARVIS Response", value=response, key="text_output", height=150) |