File size: 24,871 Bytes
62585a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76c95c2
62585a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
import os
import re
import shutil
import tempfile
import yaml
from pathlib import Path
from typing import Generator

from smolagents import CodeAgent, LiteLLMModel, MultiStepAgent, PlanningStep, Tool
from smolagents.agent_types import AgentAudio, AgentImage, AgentText
from smolagents.memory import ActionStep, FinalAnswerStep, MemoryStep
from smolagents.models import ChatMessageStreamDelta
from smolagents.utils import _is_package_available
from tools import search, scraper, FileReader, FileWriter, CommitChanges, get_repository_structure # Assuming tools.py is in the same directory

def get_step_footnote_content(step_log: MemoryStep, step_name: str) -> str:
    """Get a footnote string for a step log with duration and token information"""
    step_footnote = f"**{step_name}**"
    if hasattr(step_log, "input_token_count") and hasattr(step_log, "output_token_count"):
        token_str = f" | Input tokens: {step_log.input_token_count:,} | Output tokens: {step_log.output_token_count:,}"
        step_footnote += token_str
    if hasattr(step_log, "duration"):
        step_duration = f" | Duration: {round(float(step_log.duration), 2)}" if step_log.duration else None
        step_footnote += step_duration
    step_footnote_content = f"""<span style="color: #bbbbc2; font-size: 12px;">{step_footnote}</span> """
    return step_footnote_content


def _clean_model_output(model_output: str) -> str:
    """

    Clean up model output by removing trailing tags and extra backticks.



    Args:

        model_output (`str`): Raw model output.



    Returns:

        `str`: Cleaned model output.

    """
    if not model_output:
        return ""
    model_output = model_output.strip()
    # Remove any trailing <end_code> and extra backticks, handling multiple possible formats
    model_output = re.sub(r"```\s*<end_code>", "```", model_output)  # handles ```<end_code>
    model_output = re.sub(r"<end_code>\s*```", "```", model_output)  # handles <end_code>```
    model_output = re.sub(r"```\s*\n\s*<end_code>", "```", model_output)  # handles ```\n<end_code>
    return model_output.strip()


def _format_code_content(content: str) -> str:
    """

    Format code content as Python code block if it's not already formatted.



    Args:

        content (`str`): Code content to format.



    Returns:

        `str`: Code content formatted as a Python code block.

    """
    content = content.strip()
    # Remove existing code blocks and end_code tags
    content = re.sub(r"```.*?\n", "", content)
    content = re.sub(r"\s*<end_code>\s*", "", content)
    content = content.strip()
    # Add Python code block formatting if not already present
    if not content.startswith("```python"):
        content = f"```python\n{content}\n```"
    return content


def _process_action_step(step_log: ActionStep, skip_model_outputs: bool = False) -> Generator:
    """

    Process an [`ActionStep`] and yield appropriate Gradio ChatMessage objects.



    Args:

        step_log ([`ActionStep`]): ActionStep to process.

        skip_model_outputs (`bool`): Whether to skip model outputs.



    Yields:

        `gradio.ChatMessage`: Gradio ChatMessages representing the action step.

    """
    import gradio as gr

    # Output the step number
    step_number = f"Step {step_log.step_number}" if step_log.step_number is not None else "Step"
    if not skip_model_outputs:
        yield gr.ChatMessage(role="assistant", content=f"**{step_number}**", metadata={"status": "done"})

    # First yield the thought/reasoning from the LLM
    if not skip_model_outputs and getattr(step_log, "model_output", ""):
        model_output = _clean_model_output(step_log.model_output)
        yield gr.ChatMessage(role="assistant", content=model_output, metadata={"status": "done"})

    # For tool calls, create a parent message
    if getattr(step_log, "tool_calls", []):
        first_tool_call = step_log.tool_calls[0]
        used_code = first_tool_call.name == "python_interpreter"

        # Process arguments based on type
        args = first_tool_call.arguments
        if isinstance(args, dict):
            content = str(args.get("answer", str(args)))
        else:
            content = str(args).strip()

        # Format code content if needed
        if used_code:
            content = _format_code_content(content)

        # Create the tool call message
        parent_message_tool = gr.ChatMessage(
            role="assistant",
            content=content,
            metadata={
                "title": f"๐Ÿ› ๏ธ Used tool {first_tool_call.name}",
                "status": "done",
            },
        )
        yield parent_message_tool

    # Display execution logs if they exist
    if getattr(step_log, "observations", "") and step_log.observations.strip():
        log_content = step_log.observations.strip()
        if log_content:
            log_content = re.sub(r"^Execution logs:\s*", "", log_content)
            yield gr.ChatMessage(
                role="assistant",
                content=f"```bash\n{log_content}\n",
                metadata={"title": "๐Ÿ“ Execution Logs", "status": "done"},
            )

    # Display any images in observations
    if getattr(step_log, "observations_images", []):
        for image in step_log.observations_images:
            path_image = AgentImage(image).to_string()
            yield gr.ChatMessage(
                role="assistant",
                content={"path": path_image, "mime_type": f"image/{path_image.split('.')[-1]}"},
                metadata={"title": "๐Ÿ–ผ๏ธ Output Image", "status": "done"},
            )

    # Handle errors
    if getattr(step_log, "error", None):
        yield gr.ChatMessage(
            role="assistant", content=str(step_log.error), metadata={"title": "๐Ÿ’ฅ Error", "status": "done"}
        )

    # Add step footnote and separator
    yield gr.ChatMessage(
        role="assistant", content=get_step_footnote_content(step_log, step_number), metadata={"status": "done"}
    )
    yield gr.ChatMessage(role="assistant", content="-----", metadata={"status": "done"})


def _process_planning_step(step_log: PlanningStep, skip_model_outputs: bool = False) -> Generator:
    """

    Process a [`PlanningStep`] and yield appropriate gradio.ChatMessage objects.



    Args:

        step_log ([`PlanningStep`]): PlanningStep to process.



    Yields:

        `gradio.ChatMessage`: Gradio ChatMessages representing the planning step.

    """
    import gradio as gr

    if not skip_model_outputs:
        yield gr.ChatMessage(role="assistant", content="**Planning step**", metadata={"status": "done"})
        yield gr.ChatMessage(role="assistant", content=step_log.plan, metadata={"status": "done"})
    yield gr.ChatMessage(
        role="assistant", content=get_step_footnote_content(step_log, "Planning step"), metadata={"status": "done"}
    )
    yield gr.ChatMessage(role="assistant", content="-----", metadata={"status": "done"})


def _process_final_answer_step(step_log: FinalAnswerStep) -> Generator:
    """

    Process a [`FinalAnswerStep`] and yield appropriate gradio.ChatMessage objects.



    Args:

        step_log ([`FinalAnswerStep`]): FinalAnswerStep to process.



    Yields:

        `gradio.ChatMessage`: Gradio ChatMessages representing the final answer.

    """
    import gradio as gr

    final_answer = step_log.final_answer
    if isinstance(final_answer, AgentText):
        yield gr.ChatMessage(
            role="assistant",
            content=f"**Final answer:**\n{final_answer.to_string()}\n",
            metadata={"status": "done"},
        )
    elif isinstance(final_answer, AgentImage):
        yield gr.ChatMessage(
            role="assistant",
            content={"path": final_answer.to_string(), "mime_type": "image/png"},
            metadata={"status": "done"},
        )
    elif isinstance(final_answer, AgentAudio):
        yield gr.ChatMessage(
            role="assistant",
            content={"path": final_answer.to_string(), "mime_type": "audio/wav"},
            metadata={"status": "done"},
        )
    else:
        yield gr.ChatMessage(
            role="assistant", content=f"**Final answer:** {str(final_answer)}", metadata={"status": "done"}
        )


def pull_messages_from_step(step_log: MemoryStep, skip_model_outputs: bool = False):
    """Extract ChatMessage objects from agent steps with proper nesting.



    Args:

        step_log: The step log to display as gr.ChatMessage objects.

        skip_model_outputs: If True, skip the model outputs when creating the gr.ChatMessage objects:

            This is used for instance when streaming model outputs have already been displayed.

    """
    if not _is_package_available("gradio"):
        raise ModuleNotFoundError(
            "Please install 'gradio' extra to use the GradioUI: `pip install 'smolagents[gradio]'`"
        )
    if isinstance(step_log, ActionStep):
        yield from _process_action_step(step_log, skip_model_outputs)
    elif isinstance(step_log, PlanningStep):
        yield from _process_planning_step(step_log, skip_model_outputs)
    elif isinstance(step_log, FinalAnswerStep):
        yield from _process_final_answer_step(step_log)
    else:
        raise ValueError(f"Unsupported step type: {type(step_log)}")


def stream_to_gradio(

    agent,

    task: str,

    task_images: list | None = None,

    reset_agent_memory: bool = False,

    additional_args: dict | None = None,

):
    """Runs an agent with the given task and streams the messages from the agent as gradio ChatMessages."""
    if not _is_package_available("gradio"):
        raise ModuleNotFoundError(
            "Please install 'gradio' extra to use the GradioUI: `pip install 'smolagents[gradio]'`"
        )
    intermediate_text = ""
    for step_log in agent.run(
        task, images=task_images, stream=True, reset=reset_agent_memory, additional_args=additional_args
    ):
        # Track tokens if model provides them
        if getattr(agent.model, "last_input_token_count", None) is not None:
            if isinstance(step_log, (ActionStep, PlanningStep)):
                step_log.input_token_count = agent.model.last_input_token_count
                step_log.output_token_count = agent.model.last_output_token_count

        if isinstance(step_log, MemoryStep):
            intermediate_text = ""
            for message in pull_messages_from_step(
                step_log,
                # If we're streaming model outputs, no need to display them twice
                skip_model_outputs=getattr(agent, "stream_outputs", False),
            ):
                yield message
        elif isinstance(step_log, ChatMessageStreamDelta):
            intermediate_text += step_log.content or ""
            yield intermediate_text


class GradioUI:
    """A one-line interface to launch your agent in Gradio"""

    def __init__(self, agent_name: str = "Agent interface", agent_description: str | None = None):
        if not _is_package_available("gradio"):
            raise ModuleNotFoundError(
                "Please install 'gradio' extra to use the GradioUI: `pip install 'smolagents[gradio]'`"
            )
        self.agent_name = agent_name
        self.agent_description = agent_description

    def _initialize_agents(self, space_id: str, temp_dir: str):
        """Initializes agents and tools for a given space_id and temporary directory."""
        # Initialize model with your API key
        model = LiteLLMModel(model_id="gemini/gemini-2.0-flash")

        # Get repository structure
        repo_structure = get_repository_structure(space_id=space_id)

        # Load prompt templates
        try:
            with open("planning_agent_prompt_templates.yaml", "r") as f:
                planning_agent_prompt_templates = yaml.safe_load(f)

            with open("swe_agent_prompt_templates.yaml", "r") as f:
                swe_agent_prompt_templates = yaml.safe_load(f)
        except FileNotFoundError as e:
            print(f"Error loading prompt templates: {e}")
            print("Please ensure 'planning_agent_prompt_templates.yaml' and 'swe_agent_prompt_templates.yaml' are in the same directory.")
            return None, None # Indicate failure

        # Enhance prompts with repository structure
        planning_agent_prompt_templates["system_prompt"] = planning_agent_prompt_templates["system_prompt"] + "\n\n\n" + repo_structure + "\n\n"
        swe_agent_prompt_templates["system_prompt"] = swe_agent_prompt_templates["system_prompt"] + "\n\n\n" + repo_structure + "\n\n"

        # Initialize tool instances with temp directory
        read_file = FileReader(space_id=space_id, folder_path=temp_dir)
        write_file = FileWriter(space_id=space_id, folder_path=temp_dir)
        commit_changes = CommitChanges(space_id=space_id, folder_path=temp_dir)

        # Initialize SWE Agent with enhanced capabilities and improved description
        swe_agent = CodeAgent(
            model=model,
            prompt_templates=swe_agent_prompt_templates,
            verbosity_level=1,
            tools=[search, scraper, read_file, write_file],
            name="swe_agent",
            description="An expert Software Engineer capable of designing, developing, and debugging code. This agent can read and write files, search the web, and scrape web content to assist in coding tasks. It excels at implementing detailed technical specifications provided by the Planning Agent."
        )

        # Initialize Planning Agent with improved planning focus and description
        planning_agent = CodeAgent(
            model=model,
            prompt_templates=planning_agent_prompt_templates,
            verbosity_level=1,
            tools=[search, scraper, read_file, write_file, commit_changes],
            managed_agents=[swe_agent],
            name="planning_agent",
            description="A high-level planning agent responsible for breaking down complex user requests into actionable steps and delegating coding tasks to the Software Engineer Agent. It focuses on strategy, task decomposition, and coordinating the overall development process.",
            stream_outputs=True
        )

        return planning_agent, swe_agent

    def _update_space_id_and_agents(self, new_space_id: str, current_state: dict):
        """Handles space_id change, cleans up old temp dir, creates new, and re-initializes agents."""
        import gradio as gr

        old_temp_dir = current_state.get("temp_dir")
        if old_temp_dir and os.path.exists(old_temp_dir):
            print(f"Cleaning up old temporary directory: {old_temp_dir}")
            shutil.rmtree(old_temp_dir)

        if not new_space_id:
            current_state["space_id"] = None
            current_state["temp_dir"] = None
            current_state["agent"] = None
            current_state["file_upload_folder"] = None
            print("Space ID is empty. Agents are not initialized.")
            return new_space_id, None, None, None, gr.Textbox("Please enter a Space ID to initialize agents.", visible=True)

        # Create new temporary directory
        temp_dir = tempfile.mkdtemp(prefix=f"ai_workspace_{new_space_id.replace('/', '_')}_")
        file_upload_folder = Path(temp_dir) / "uploads"
        file_upload_folder.mkdir(parents=True, exist_ok=True)

        # Initialize agents
        planning_agent, _ = self._initialize_agents(new_space_id, temp_dir)

        if planning_agent is None:
             # Handle initialization failure
            shutil.rmtree(temp_dir) # Clean up the newly created temp dir
            current_state["space_id"] = None
            current_state["temp_dir"] = None
            current_state["agent"] = None
            current_state["file_upload_folder"] = None
            return new_space_id, None, None, None, gr.Textbox("Failed to initialize agents. Check console for errors.", visible=True)


        # Update session state
        current_state["space_id"] = new_space_id
        current_state["temp_dir"] = temp_dir
        current_state["agent"] = planning_agent
        current_state["file_upload_folder"] = file_upload_folder

        print(f"Initialized agents for Space ID: {new_space_id} in {temp_dir}")
        return new_space_id, [], [], file_upload_folder, gr.Textbox(f"Agents initialized for Space ID: {new_space_id}", visible=True)


    def interact_with_agent(self, prompt, messages, session_state):
        import gradio as gr

        agent = session_state.get("agent")
        if agent is None:
            messages.append(gr.ChatMessage(role="assistant", content="Please enter a Space ID and initialize the agents first."))
            yield messages
            return

        try:
            messages.append(gr.ChatMessage(role="user", content=prompt, metadata={"status": "done"}))
            yield messages

            for msg in stream_to_gradio(agent, task=prompt, reset_agent_memory=False):
                if isinstance(msg, gr.ChatMessage):
                    messages.append(msg)
                elif isinstance(msg, str):  # Then it's only a completion delta
                    try:
                        if messages[-1].metadata["status"] == "pending":
                            messages[-1].content = msg
                        else:
                            messages.append(
                                gr.ChatMessage(role="assistant", content=msg, metadata={"status": "pending"})
                            )
                    except Exception as e:
                        raise e
                yield messages

            yield messages
        except Exception as e:
            print(f"Error in interaction: {str(e)}")
            messages.append(gr.ChatMessage(role="assistant", content=f"Error: {str(e)}"))
            yield messages

    def upload_file(self, file, file_uploads_log, session_state, allowed_file_types=None):
        """

        Handle file uploads, default allowed types are .pdf, .docx, and .txt

        """
        import gradio as gr

        file_upload_folder = session_state.get("file_upload_folder")
        if file_upload_folder is None:
             return gr.Textbox("Please enter a Space ID and initialize agents before uploading files.", visible=True), file_uploads_log

        if file is None:
            return gr.Textbox(value="No file uploaded", visible=True), file_uploads_log

        if allowed_file_types is None:
            allowed_file_types = [".pdf", ".docx", ".txt"]

        file_ext = os.path.splitext(file.name)[1].lower()
        if file_ext not in allowed_file_types:
            return gr.Textbox("File type disallowed", visible=True), file_uploads_log

        # Sanitize file name
        original_name = os.path.basename(file.name)
        sanitized_name = re.sub(
            r"[^\w\-.]", "_", original_name
        )  # Replace any non-alphanumeric, non-dash, or non-dot characters with underscores

        # Save the uploaded file to the specified folder
        file_path = os.path.join(file_upload_folder, os.path.basename(sanitized_name))
        shutil.copy(file.name, file_path)

        return gr.Textbox(f"File uploaded: {file_path}", visible=True), file_uploads_log + [file_path]

    def log_user_message(self, text_input, file_uploads_log):
        import gradio as gr

        return (
            text_input
            + (
                f"\nYou have been provided with these files, which might be helpful or not: {file_uploads_log}"
                if len(file_uploads_log) > 0
                else ""
            ),
            "",
            gr.Button(interactive=False),
        )

    def launch(self, share: bool = True, **kwargs):
        self.create_app().launch(debug=True, share=share, **kwargs)

    def create_app(self):
        import gradio as gr

        with gr.Blocks(theme="ocean", fill_height=True) as demo:
            # Add session state to store session-specific data
            session_state = gr.State({})
            stored_messages = gr.State([])
            file_uploads_log = gr.State([])
            space_id_state = gr.State(None) # State to hold the current space_id
            temp_dir_state = gr.State(None) # State to hold the current temp_dir
            file_upload_folder_state = gr.State(None) # State to hold the current file upload folder

            with gr.Sidebar():
                gr.Markdown(
                    f"# {self.agent_name.replace('_', ' ').capitalize()}"
                    "\n> This web ui allows you to interact with a `smolagents` agent that can use tools and execute steps to complete tasks."
                    + (f"\n\n**Agent description:**\n{self.agent_description}" if self.agent_description else "")
                )

                # Add Space ID input
                space_id_input = gr.Textbox(
                    label="Hugging Face Space ID",
                    placeholder="Enter your Space ID (e.g., username/space-name)",
                    interactive=True
                )
                initialization_status = gr.Textbox(label="Initialization Status", interactive=False, visible=True)

                # Trigger agent initialization when space_id changes
                space_id_input.change(
                    self._update_space_id_and_agents,
                    [space_id_input, session_state],
                    [space_id_state, stored_messages, file_uploads_log, file_upload_folder_state, initialization_status]
                )


                with gr.Group():
                    gr.Markdown("**Your request**", container=True)
                    text_input = gr.Textbox(
                        lines=3,
                        label="Chat Message",
                        container=False,
                        placeholder="Enter your prompt here and press Shift+Enter or press the button",
                    )
                    submit_btn = gr.Button("Submit", variant="primary")

                gr.HTML(
                    "<br><br><h4><center>Powered by <a target='_blank' href='https://github.com/huggingface/smolagents'><b>smolagents</b></a></center></h4>"
                )

            # Main chat interface
            chatbot = gr.Chatbot(
                label="Agent",
                type="messages",
                avatar_images=(
                    None,
                    "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/smolagents/mascot_smol.png",
                ),
                resizeable=True,
                scale=1,
            )

            # Set up event handlers
            text_input.submit(
                self.log_user_message,
                [text_input, file_uploads_log],
                [stored_messages, text_input, submit_btn],
            ).then(self.interact_with_agent, [stored_messages, chatbot, session_state], [chatbot]).then(
                lambda: (
                    gr.Textbox(
                        interactive=True, placeholder="Enter your prompt here and press Shift+Enter or the button"
                    ),
                    gr.Button(interactive=True),
                ),
                None,
                [text_input, submit_btn],
            )

            submit_btn.click(
                self.log_user_message,
                [text_input, file_uploads_log],
                [stored_messages, text_input, submit_btn],
            ).then(self.interact_with_agent, [stored_messages, chatbot, session_state], [chatbot]).then(
                lambda: (
                    gr.Textbox(
                        interactive=True, placeholder="Enter your prompt here and press Shift+Enter or the button"
                    ),
                    gr.Button(interactive=True),
                ),
                None,
                [text_input, submit_btn],
            )

        return demo

def run_gradio_agent():
    """Runs the Gradio UI for the agent."""
    # The GradioUI class now handles space_id input and agent initialization internally
    GradioUI(
        agent_name="SmolAgents Gradio Interface",
        agent_description="Interact with a SmolAgents planning agent capable of code generation and execution."
    ).launch()

if __name__ == "__main__":
    # The script now directly launches the Gradio UI
    run_gradio_agent()