Spaces:
Runtime error
Runtime error
import gradio as gr | |
from inference import OneDMInference | |
import os | |
from PIL import Image | |
import cv2 | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
# Load the model | |
model = OneDMInference( | |
model_path='one_dm_finetuned.pt', | |
cfg_path='configs/finetuned.yml' | |
) | |
# Define Laplacian kernel (ensure it’s on the correct device if needed) | |
laplace = torch.tensor( | |
[[0, 1, 0], | |
[1, -4, 1], | |
[0, 1, 0]], dtype=torch.float, requires_grad=False | |
).view(1, 1, 3, 3) | |
def generate_laplace_image(image_path, target_size=(64, 64)): | |
""" | |
Generate a Laplace image from the input image using a Laplacian filter. | |
Adjusted to match model-expected dimensions (e.g., 64x64). | |
""" | |
# Read image | |
image = cv2.imread(image_path) | |
if image is None: | |
raise ValueError(f"Could not read image at {image_path}") | |
# Convert to grayscale | |
image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) | |
# Resize to model-compatible size (e.g., 64x64) | |
image = cv2.resize(image, target_size) | |
# Convert to tensor | |
x = torch.from_numpy(image).unsqueeze(0).unsqueeze(0).float() | |
# Normalize input | |
x = x / 255.0 | |
# Apply Laplacian filter with proper padding | |
y = F.conv2d(x, laplace, stride=1, padding=1) # Padding=1 keeps spatial dims intact | |
# Process output | |
y = y.squeeze().numpy() | |
y = np.clip(y * 255.0, 0, 255) | |
y = y.astype(np.uint8) | |
# Apply thresholding | |
_, threshold = cv2.threshold(y, 0, 255, cv2.THRESH_OTSU) | |
# Save output | |
laplace_path = os.path.splitext(image_path)[0] + "_laplace.png" | |
cv2.imwrite(laplace_path, threshold) | |
return laplace_path | |
def generate_handwriting(text, style_image, laplace_image=None): | |
output_dir = "./generated" | |
os.makedirs(output_dir, exist_ok=True) | |
# Assume model expects 64x64 inputs based on logs (adjust if config specifies otherwise) | |
target_size = (64, 64) | |
# Generate Laplace image if not provided | |
if laplace_image is None: | |
laplace_image = generate_laplace_image(style_image, target_size) | |
else: | |
# Ensure provided Laplace image matches expected size | |
laplace_img = cv2.imread(laplace_image, cv2.IMREAD_GRAYSCALE) | |
if laplace_img.shape != target_size: | |
laplace_img = cv2.resize(laplace_img, target_size) | |
laplace_image = os.path.splitext(laplace_image)[0] + "_resized.png" | |
cv2.imwrite(laplace_image, laplace_img) | |
# Resize style image to match model expectations | |
style_img = cv2.imread(style_image) | |
style_img_resized = cv2.resize(style_img, target_size) | |
style_image_resized = os.path.splitext(style_image)[0] + "_resized.png" | |
cv2.imwrite(style_image_resized, style_img_resized) | |
# Generate handwriting for each word | |
words = text.split() | |
generated_image_paths = [] | |
for word in words: | |
output_paths = model.generate( | |
text=word, | |
style_path=style_image_resized, # Use resized style image | |
laplace_path=laplace_image, # Use Laplace image | |
output_dir=output_dir | |
) | |
generated_image_paths.append(output_paths[0]) | |
# Load generated images | |
images = [Image.open(img_path) for img_path in generated_image_paths] | |
# Constants for spacing and margins (adjusted for better spacing) | |
word_gap = 5 # Reduced from 20 to 5 for closer word spacing | |
line_gap = 20 # Reduced from 30 for tighter lines | |
max_words_per_line = 5 | |
top_margin = 10 # Reduced from 30 | |
left_margin = 10 # Reduced from 30 | |
# Calculate line dimensions | |
lines = [] | |
current_line = [] | |
current_line_width = 0 | |
current_line_height = 0 | |
for img in images: | |
if len(current_line) >= max_words_per_line or current_line_width + img.size[0] > 500: # Add a max width constraint (e.g., 500px) | |
lines.append((current_line, current_line_width - word_gap, current_line_height)) | |
current_line = [] | |
current_line_width = 0 | |
current_line_height = 0 | |
current_line.append(img) | |
current_line_width += img.size[0] + word_gap | |
current_line_height = max(current_line_height, img.size[1]) | |
# Add the last line if it has content | |
if current_line: | |
lines.append((current_line, current_line_width - word_gap, current_line_height)) | |
# Calculate total dimensions | |
total_width = max(line[1] for line in lines) + (2 * left_margin) # Width of the widest line | |
total_height = sum(line[2] for line in lines) + (len(lines) - 1) * line_gap + top_margin | |
# Create merged image | |
merged_image = Image.new('RGB', (total_width, total_height), color=(255, 255, 255)) | |
# Paste words into the image | |
y_offset = top_margin | |
for line_images, line_width, line_height in lines: | |
x_offset = left_margin # Align to the left instead of centering | |
for img in line_images: | |
# Adjust y_offset for each word to align baselines (optional, if heights vary significantly) | |
word_y_offset = y_offset + (line_height - img.size[1]) # Align to the bottom of the line | |
merged_image.paste(img, (x_offset, word_y_offset)) | |
x_offset += img.size[0] + word_gap | |
y_offset += line_height + line_gap | |
# Save merged image | |
merged_image_path = os.path.join(output_dir, "merged_output.png") | |
merged_image.save(merged_image_path) | |
return merged_image_path, gr.update(value=laplace_image) | |
# Create Gradio interface | |
iface = gr.Interface( | |
fn=generate_handwriting, | |
inputs=[ | |
gr.Textbox(label="Text to generate"), | |
gr.Image(label="Style Image", type="filepath"), | |
gr.Image(label="Laplace Image (Optional)", type="filepath") | |
], | |
outputs=[ | |
gr.Image(label="Generated Handwriting"), | |
gr.Image(label="Laplace Image (Optional)") | |
], | |
title="Handwriting Generation", | |
description="Generate handwritten text using One-DM model. If no Laplace image is provided, it will be generated from the style image.", | |
examples=[ | |
["Hello World", | |
"English_data/Dataset/test/169/c04-134-05-08.png", | |
"English_data/Dataset_laplace/test/169/c04-134-00-00.png"] | |
] | |
) | |
if __name__ == "__main__": | |
iface.launch(share=True) |