Update app.py
Browse files
app.py
CHANGED
|
@@ -11,15 +11,9 @@ from scipy.spatial import distance as dist
|
|
| 11 |
# App Configuration & Model Loading
|
| 12 |
# ==============================================================================
|
| 13 |
|
| 14 |
-
# For Hugging Face Spaces deployment, you also need these two files:
|
| 15 |
-
# 1. requirements.txt (listing all Python libraries)
|
| 16 |
-
# 2. packages.txt (containing the line "tesseract-ocr")
|
| 17 |
-
# NOTE: With this new code, you can remove 'matplotlib' from requirements.txt
|
| 18 |
-
|
| 19 |
-
# Set Streamlit page configuration
|
| 20 |
st.set_page_config(
|
| 21 |
-
page_title="Document
|
| 22 |
-
page_icon="
|
| 23 |
layout="wide"
|
| 24 |
)
|
| 25 |
|
|
@@ -27,16 +21,15 @@ st.set_page_config(
|
|
| 27 |
@st.cache_resource
|
| 28 |
def load_model():
|
| 29 |
"""Loads the Table Transformer model and processor."""
|
| 30 |
-
|
| 31 |
processor = DetrImageProcessor.from_pretrained("microsoft/table-transformer-structure-recognition")
|
| 32 |
model = TableTransformerForObjectDetection.from_pretrained("microsoft/table-transformer-structure-recognition")
|
| 33 |
-
print("Model loaded successfully.")
|
| 34 |
return processor, model
|
| 35 |
|
| 36 |
processor, model = load_model()
|
| 37 |
|
| 38 |
# ==============================================================================
|
| 39 |
-
# Core Image Processing Functions
|
| 40 |
# ==============================================================================
|
| 41 |
|
| 42 |
def order_points(pts):
|
|
@@ -75,157 +68,122 @@ def find_and_straighten_document(image):
|
|
| 75 |
return perspective_transform(image, box)
|
| 76 |
|
| 77 |
def correct_orientation(image):
|
| 78 |
-
"""
|
| 79 |
-
Corrects the orientation of an image using a robust cascade method.
|
| 80 |
-
1. Tries fast OSD (Orientation and Script Detection).
|
| 81 |
-
2. If OSD fails, falls back to analyzing word bounding boxes.
|
| 82 |
-
"""
|
| 83 |
-
print("--- Running Orientation Check ---")
|
| 84 |
-
|
| 85 |
-
# --- METHOD 1: Fast Orientation and Script Detection (OSD) ---
|
| 86 |
try:
|
| 87 |
-
osd = pytesseract.image_to_osd(image, output_type=pytesseract.Output.DICT
|
| 88 |
rotation = osd['rotate']
|
| 89 |
-
|
| 90 |
-
if rotation > 0:
|
| 91 |
-
# Tesseract's rotation is counter-clockwise
|
| 92 |
if rotation == 90:
|
| 93 |
-
|
| 94 |
elif rotation == 180:
|
| 95 |
-
|
| 96 |
else: # 270
|
| 97 |
-
|
| 98 |
-
|
| 99 |
except Exception as e:
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
# --- METHOD 2: Fallback using Word Bounding Box Analysis ---
|
| 103 |
-
# This method is slower but more robust for images with little text.
|
| 104 |
-
best_rotation = 0
|
| 105 |
-
max_horizontal_boxes = -1
|
| 106 |
-
|
| 107 |
-
# Pre-process image once for all rotations
|
| 108 |
-
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
| 109 |
-
thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1]
|
| 110 |
-
|
| 111 |
-
orientations = {
|
| 112 |
-
0: thresh,
|
| 113 |
-
90: cv2.rotate(thresh, cv2.ROTATE_90_CLOCKWISE),
|
| 114 |
-
180: cv2.rotate(thresh, cv2.ROTATE_180),
|
| 115 |
-
270: cv2.rotate(thresh, cv2.ROTATE_90_COUNTERCLOCKWISE)
|
| 116 |
-
}
|
| 117 |
-
|
| 118 |
-
for angle, rotated_img in orientations.items():
|
| 119 |
-
try:
|
| 120 |
-
data = pytesseract.image_to_data(rotated_img, output_type=pytesseract.Output.DICT, timeout=5)
|
| 121 |
-
horizontal_boxes = 0
|
| 122 |
-
num_boxes = len(data['level'])
|
| 123 |
-
for i in range(num_boxes):
|
| 124 |
-
# We only consider word-level boxes (level 5) with some confidence
|
| 125 |
-
if data['level'][i] == 5 and int(data['conf'][i]) > 10:
|
| 126 |
-
w = data['width'][i]
|
| 127 |
-
h = data['height'][i]
|
| 128 |
-
if w > h: # Check if the box is horizontal
|
| 129 |
-
horizontal_boxes += 1
|
| 130 |
-
|
| 131 |
-
print(f" Rotation {angle}°: Found {horizontal_boxes} horizontal word boxes.")
|
| 132 |
-
|
| 133 |
-
if horizontal_boxes > max_horizontal_boxes:
|
| 134 |
-
max_horizontal_boxes = horizontal_boxes
|
| 135 |
-
best_rotation = angle
|
| 136 |
-
except Exception as e:
|
| 137 |
-
print(f" Word box analysis failed for rotation {angle}°: {e}")
|
| 138 |
-
continue
|
| 139 |
-
|
| 140 |
-
print(f"--> Best rotation found at {best_rotation} degrees.")
|
| 141 |
-
|
| 142 |
-
# Apply the best rotation to the ORIGINAL color image
|
| 143 |
-
if best_rotation == 90:
|
| 144 |
-
return cv2.rotate(image, cv2.ROTATE_90_CLOCKWISE)
|
| 145 |
-
elif best_rotation == 180:
|
| 146 |
-
return cv2.rotate(image, cv2.ROTATE_180)
|
| 147 |
-
elif best_rotation == 270:
|
| 148 |
-
return cv2.rotate(image, cv2.ROTATE_90_COUNTERCLOCKWISE)
|
| 149 |
-
else: # 0 degrees
|
| 150 |
-
return image
|
| 151 |
|
| 152 |
-
# ==============================================================================
|
| 153 |
-
# NEW AND IMPROVED: Table Structure Recognition using OpenCV for Drawing
|
| 154 |
-
# ==============================================================================
|
| 155 |
def extract_and_draw_table_structure(image_bgr):
|
| 156 |
-
"""
|
| 157 |
-
Takes a BGR image, finds table structure, and returns an image with
|
| 158 |
-
bounding boxes drawn directly using OpenCV.
|
| 159 |
-
"""
|
| 160 |
-
# 1. Run model inference (same as before)
|
| 161 |
image_pil = Image.fromarray(cv2.cvtColor(image_bgr, cv2.COLOR_BGR2RGB))
|
| 162 |
inputs = processor(images=image_pil, return_tensors="pt")
|
| 163 |
-
|
| 164 |
with torch.no_grad():
|
| 165 |
outputs = model(**inputs)
|
| 166 |
-
|
| 167 |
target_sizes = torch.tensor([image_pil.size[::-1]])
|
| 168 |
results = processor.post_process_object_detection(outputs, threshold=0.7, target_sizes=target_sizes)[0]
|
| 169 |
-
|
| 170 |
-
# 2. Draw results on a copy of the original image using OpenCV
|
| 171 |
img_with_boxes = image_bgr.copy()
|
| 172 |
-
|
| 173 |
-
# BGR color codes for OpenCV
|
| 174 |
colors = {"table row": (0, 255, 0), "table column": (0, 0, 255), "table": (255, 0, 255)}
|
| 175 |
-
|
| 176 |
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
|
| 177 |
class_name = model.config.id2label[label.item()]
|
| 178 |
if class_name in colors:
|
| 179 |
-
# Get box coordinates and convert to integers
|
| 180 |
xmin, ymin, xmax, ymax = [int(val) for val in box.tolist()]
|
| 181 |
-
|
| 182 |
-
# Get color for the class
|
| 183 |
color = colors[class_name]
|
| 184 |
-
|
| 185 |
-
# Draw rectangle on the image
|
| 186 |
cv2.rectangle(img_with_boxes, (xmin, ymin), (xmax, ymax), color, 2)
|
| 187 |
-
|
| 188 |
return img_with_boxes
|
| 189 |
|
| 190 |
# ==============================================================================
|
| 191 |
-
#
|
| 192 |
# ==============================================================================
|
| 193 |
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
st.
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
st.
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
# App Configuration & Model Loading
|
| 12 |
# ==============================================================================
|
| 13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
st.set_page_config(
|
| 15 |
+
page_title="Document AI Toolkit",
|
| 16 |
+
page_icon="🤖",
|
| 17 |
layout="wide"
|
| 18 |
)
|
| 19 |
|
|
|
|
| 21 |
@st.cache_resource
|
| 22 |
def load_model():
|
| 23 |
"""Loads the Table Transformer model and processor."""
|
| 24 |
+
st.write("Cache miss: Loading Table Transformer model...")
|
| 25 |
processor = DetrImageProcessor.from_pretrained("microsoft/table-transformer-structure-recognition")
|
| 26 |
model = TableTransformerForObjectDetection.from_pretrained("microsoft/table-transformer-structure-recognition")
|
|
|
|
| 27 |
return processor, model
|
| 28 |
|
| 29 |
processor, model = load_model()
|
| 30 |
|
| 31 |
# ==============================================================================
|
| 32 |
+
# Core Image Processing Functions (Unchanged)
|
| 33 |
# ==============================================================================
|
| 34 |
|
| 35 |
def order_points(pts):
|
|
|
|
| 68 |
return perspective_transform(image, box)
|
| 69 |
|
| 70 |
def correct_orientation(image):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
try:
|
| 72 |
+
osd = pytesseract.image_to_osd(image, output_type=pytesseract.Output.DICT)
|
| 73 |
rotation = osd['rotate']
|
| 74 |
+
if rotation in [90, 180, 270]:
|
|
|
|
|
|
|
| 75 |
if rotation == 90:
|
| 76 |
+
rotated_image = cv2.rotate(image, cv2.ROTATE_90_COUNTERCLOCKWISE)
|
| 77 |
elif rotation == 180:
|
| 78 |
+
rotated_image = cv2.rotate(image, cv2.ROTATE_180)
|
| 79 |
else: # 270
|
| 80 |
+
rotated_image = cv2.rotate(image, cv2.ROTATE_90_CLOCKWISE)
|
| 81 |
+
return rotated_image
|
| 82 |
except Exception as e:
|
| 83 |
+
st.warning(f"OSD check failed: {e}. Using original orientation.")
|
| 84 |
+
return image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
|
|
|
|
|
|
|
|
|
|
| 86 |
def extract_and_draw_table_structure(image_bgr):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
image_pil = Image.fromarray(cv2.cvtColor(image_bgr, cv2.COLOR_BGR2RGB))
|
| 88 |
inputs = processor(images=image_pil, return_tensors="pt")
|
|
|
|
| 89 |
with torch.no_grad():
|
| 90 |
outputs = model(**inputs)
|
|
|
|
| 91 |
target_sizes = torch.tensor([image_pil.size[::-1]])
|
| 92 |
results = processor.post_process_object_detection(outputs, threshold=0.7, target_sizes=target_sizes)[0]
|
|
|
|
|
|
|
| 93 |
img_with_boxes = image_bgr.copy()
|
|
|
|
|
|
|
| 94 |
colors = {"table row": (0, 255, 0), "table column": (0, 0, 255), "table": (255, 0, 255)}
|
|
|
|
| 95 |
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
|
| 96 |
class_name = model.config.id2label[label.item()]
|
| 97 |
if class_name in colors:
|
|
|
|
| 98 |
xmin, ymin, xmax, ymax = [int(val) for val in box.tolist()]
|
|
|
|
|
|
|
| 99 |
color = colors[class_name]
|
|
|
|
|
|
|
| 100 |
cv2.rectangle(img_with_boxes, (xmin, ymin), (xmax, ymax), color, 2)
|
|
|
|
| 101 |
return img_with_boxes
|
| 102 |
|
| 103 |
# ==============================================================================
|
| 104 |
+
# UI Functions for Each Step
|
| 105 |
# ==============================================================================
|
| 106 |
|
| 107 |
+
def initialize_state():
|
| 108 |
+
"""Initializes the session state."""
|
| 109 |
+
if "stage" not in st.session_state:
|
| 110 |
+
st.session_state.stage = "upload"
|
| 111 |
+
st.session_state.original_image = None
|
| 112 |
+
st.session_state.processed_image = None
|
| 113 |
+
|
| 114 |
+
def reset_app():
|
| 115 |
+
"""Resets the app to the initial upload stage."""
|
| 116 |
+
for key in st.session_state.keys():
|
| 117 |
+
del st.session_state[key]
|
| 118 |
+
initialize_state()
|
| 119 |
+
|
| 120 |
+
# --- Main App UI ---
|
| 121 |
+
initialize_state()
|
| 122 |
+
|
| 123 |
+
st.title("🤖 Document AI Toolkit")
|
| 124 |
+
st.markdown("---")
|
| 125 |
+
|
| 126 |
+
# Use columns for a centered and constrained layout
|
| 127 |
+
left_col, main_col, right_col = st.columns([1, 4, 1])
|
| 128 |
+
|
| 129 |
+
with main_col:
|
| 130 |
+
# --- STAGE 1: UPLOAD ---
|
| 131 |
+
if st.session_state.stage == "upload":
|
| 132 |
+
st.header("Step 1: Upload Your Document")
|
| 133 |
+
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
| 134 |
+
|
| 135 |
+
if uploaded_file:
|
| 136 |
+
file_bytes = np.asarray(bytearray(uploaded_file.read()), dtype=np.uint8)
|
| 137 |
+
st.session_state.original_image = cv2.imdecode(file_bytes, 1)
|
| 138 |
+
st.image(cv2.cvtColor(st.session_state.original_image, cv2.COLOR_BGR2RGB), caption="Original Upload", use_container_width=True)
|
| 139 |
+
|
| 140 |
+
if st.button("▶️ Start Pre-processing"):
|
| 141 |
+
st.session_state.stage = "process"
|
| 142 |
+
st.rerun()
|
| 143 |
+
|
| 144 |
+
# --- STAGE 2: PRE-PROCESSING ---
|
| 145 |
+
elif st.session_state.stage == "process":
|
| 146 |
+
st.header("Step 2: Pre-processing Result")
|
| 147 |
+
with st.spinner("Straightening and correcting orientation..."):
|
| 148 |
+
original_image = st.session_state.original_image
|
| 149 |
+
straightened = find_and_straighten_document(original_image)
|
| 150 |
+
image_to_orient = straightened if straightened is not None and straightened.size > 0 else original_image
|
| 151 |
+
st.session_state.processed_image = correct_orientation(image_to_orient)
|
| 152 |
+
|
| 153 |
+
st.image(cv2.cvtColor(st.session_state.processed_image, cv2.COLOR_BGR2RGB), caption="Corrected Document", use_container_width=True)
|
| 154 |
+
st.info("The document has been straightened and oriented.")
|
| 155 |
+
|
| 156 |
+
if st.button("📊 Find Table Structure"):
|
| 157 |
+
st.session_state.stage = "analyze"
|
| 158 |
+
st.rerun()
|
| 159 |
+
|
| 160 |
+
if st.button("↩️ Upload New Image"):
|
| 161 |
+
reset_app()
|
| 162 |
+
st.rerun()
|
| 163 |
+
|
| 164 |
+
# --- STAGE 3: ANALYSIS ---
|
| 165 |
+
elif st.session_state.stage == "analyze":
|
| 166 |
+
st.header("Step 3: Table Structure Analysis")
|
| 167 |
+
processed_image = st.session_state.processed_image
|
| 168 |
+
with st.spinner("Running Table Transformer model... This can take a moment."):
|
| 169 |
+
annotated_image = extract_and_draw_table_structure(processed_image)
|
| 170 |
+
|
| 171 |
+
st.subheader("Final Results")
|
| 172 |
+
|
| 173 |
+
# Display results side-by-side
|
| 174 |
+
res_col1, res_col2 = st.columns(2)
|
| 175 |
+
with res_col1:
|
| 176 |
+
st.image(cv2.cvtColor(processed_image, cv2.COLOR_BGR2RGB), caption="Cleaned Document", use_container_width=True)
|
| 177 |
+
_, buf = cv2.imencode(".jpg", processed_image)
|
| 178 |
+
st.download_button(
|
| 179 |
+
label="📥 Download Clean Image",
|
| 180 |
+
data=buf.tobytes(),
|
| 181 |
+
file_name="corrected_document.jpg",
|
| 182 |
+
mime="image/jpeg",
|
| 183 |
+
)
|
| 184 |
+
with res_col2:
|
| 185 |
+
st.image(cv2.cvtColor(annotated_image, cv2.COLOR_BGR2RGB), caption="Detected Table Structure", use_container_width=True)
|
| 186 |
+
|
| 187 |
+
if st.button("🔄 Start Over"):
|
| 188 |
+
reset_app()
|
| 189 |
+
st.rerun()
|