Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM | |
model_name = "Kongfha/PhraAphaiManee-LM" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained(model_name) | |
nlp = pipeline("text-generation", | |
model=model, | |
tokenizer=tokenizer) | |
def generate(input_sentence, top_k=50, temperature=1.0, max_length=140): | |
generated_text = nlp(input_sentence, | |
max_length=int(max_length), | |
do_sample=True, | |
top_k=int(top_k), | |
temperature=float(temperature)) | |
return generated_text[0]['generated_text'] | |
inputs = [ | |
gr.inputs.Textbox(label="Input Sentence"), | |
gr.inputs.Number(default=50, label="Top K"), | |
gr.inputs.Slider(minimum=0.1, maximum=2.0, default=1.0, label="Temperature", step=0.1), | |
gr.inputs.Number(default=140, label="Max Length") | |
] | |
outputs = gr.outputs.Textbox(label="Generated Text") | |
examples = [ | |
["๏ เรือล่อง", 50, 1.0, 60], | |
["๏ แม้นชีวี", 30, 0.8, 60], | |
["๏ หากวันใด", 50, 1.0, 60], | |
["๏ หากจำเป็น", 70, 1.5, 60] | |
] | |
iface = gr.Interface( | |
fn=generate, | |
inputs=inputs, | |
outputs=outputs, | |
examples=examples, | |
title="PhraAphaiManee-LM (แต่งกลอนสไตล์พระอภัยมณี ด้วย GPT-2)", | |
description="โมเดลนี้เป็นโมเดล GPT-2 ที่ถูกเทรนบนชุดข้อมูลพระอภัยมณี" | |
) | |
iface.launch() | |