Spaces:
Running
on
T4
Running
on
T4
File size: 2,339 Bytes
4358e59 9c70ba0 3fec1fb 4358e59 3976ed9 f4ff201 3fec1fb 70e3d12 3fec1fb 70e3d12 3fec1fb 24176cc 7e9a760 9c70ba0 548031b 4358e59 98b5af6 7e9a760 809a5ae 9c70ba0 9f0ced2 4358e59 9c70ba0 3976ed9 4358e59 24176cc 4358e59 809a5ae f9aa80f 3fec1fb 4358e59 98b5af6 ca74145 a4ca4f9 ca74145 4358e59 686e886 4358e59 75f237b 3fec1fb 0a14984 3fec1fb 70e3d12 a4ca4f9 548031b 02c54be 24176cc 75f237b 5f1159f a4ca4f9 769a722 a4ca4f9 24176cc b47c647 4358e59 6fed0f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
from diffusers import AutoPipelineForText2Image, StableDiffusionImg2ImgPipeline
from PIL import Image
import gradio as gr
import random
import torch
import math
css = """
.btn-green {
background-image: linear-gradient(to bottom right, #6dd178, #00a613) !important;
border-color: #22c55e !important;
color: #166534 !important;
}
.btn-green:hover {
background-image: linear-gradient(to bottom right, #6dd178, #6dd178) !important;
}
"""
def generate(prompt, samp_steps, seed, strength, progress=gr.Progress(track_tqdm=True)):
if seed < 0:
seed = random.randint(1,999999)
image = txt2img(
prompt,
num_inference_steps=1,
guidance_scale=0.0,
generator=torch.manual_seed(seed),
).images[0]
upscaled_image = image.resize((1024,1024), 1)
final_image = img2img(
prompt,
upscaled_image,
num_inference_steps=math.ceil(samp_steps/strength),
guidance_scale=5,
strength=strength,
generator=torch.manual_seed(seed),
).images[0]
return [final_image], seed
def set_base_models():
txt2img = AutoPipelineForText2Image.from_pretrained(
"stabilityai/sdxl-turbo",
torch_dtype = torch.float16,
variant = "fp16"
)
txt2img.to("cuda")
img2img = StableDiffusionImg2ImgPipeline.from_pretrained(
"Lykon/dreamshaper-8",
torch_dtype = torch.float16,
variant = "fp16",
safety_checker=None
)
img2img.to("cuda")
return txt2img, img2img
with gr.Blocks(css=css) as demo:
with gr.Column():
prompt = gr.Textbox(label="Prompt")
submit_btn = gr.Button("Generate", elem_classes="btn-green")
with gr.Row():
sampling_steps = gr.Slider(1, 10, value=5, step=1, label="Sampling steps")
strength = gr.Slider(0, 1, value=0.75, step=0.05, label="Refiner strength")
seed = gr.Number(label="Seed", value=-1, minimum=-1, precision=0)
lastSeed = gr.Number(label="Last Seed", value=-1, interactive=False)
gallery = gr.Gallery(show_label=False, preview=True, container=False, height=1100)
submit_btn.click(generate, [prompt, sampling_steps, seed, strength], [gallery, lastSeed], queue=True)
txt2img, img2img = set_base_models()
demo.launch(debug=True) |