KunaalNaik commited on
Commit
1766002
·
verified ·
1 Parent(s): 5a2627e

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +32 -0
app.py ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import numpy as np
3
+ from sklearn.linear_model import LinearRegression
4
+
5
+ # Sample training data (Experience vs. Salary)
6
+ data = {
7
+ "experience": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
8
+ "salary": [30000, 35000, 40000, 45000, 50000, 55000, 60000, 65000, 70000, 75000, 80000]
9
+ }
10
+
11
+ # Train a simple linear regression model
12
+ X = np.array(data["experience"]).reshape(-1, 1)
13
+ y = np.array(data["salary"])
14
+ model = LinearRegression()
15
+ model.fit(X, y)
16
+
17
+ # Streamlit app
18
+ def main():
19
+ st.title("Salary Prediction Application")
20
+ st.write("This application predicts your salary based on your experience.")
21
+
22
+ # Input from user
23
+ experience = st.number_input("Enter your experience (in years):", min_value=0, max_value=50, value=0, step=1)
24
+
25
+ # Predict salary
26
+ predicted_salary = model.predict([[experience]])[0]
27
+
28
+ # Display prediction
29
+ st.header(f"Predicted Salary: ${predicted_salary:,.2f}")
30
+
31
+ if __name__ == "__main__":
32
+ main()