import streamlit as st import numpy as np from sklearn.linear_model import LinearRegression # Sample training data (Experience vs. Salary) data = { "experience": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10], "salary": [30000, 35000, 40000, 45000, 50000, 55000, 60000, 65000, 70000, 75000, 80000] } # Train a simple linear regression model X = np.array(data["experience"]).reshape(-1, 1) y = np.array(data["salary"]) model = LinearRegression() model.fit(X, y) # Streamlit app def main(): st.title("Salary Prediction Application") st.write("This application predicts your salary based on your experience.") # Input from user experience = st.number_input("Enter your experience (in years):", min_value=0, max_value=50, value=0, step=1) # Predict salary predicted_salary = model.predict([[experience]])[0] # Display prediction st.header(f"Predicted Salary: ${predicted_salary:,.2f}") if __name__ == "__main__": main()