Fabrice-TIERCELIN commited on
Commit
603292f
·
verified ·
1 Parent(s): 1843170

Create app_endframe.py

Browse files
Files changed (1) hide show
  1. app_endframe.py +898 -0
app_endframe.py ADDED
@@ -0,0 +1,898 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from diffusers_helper.hf_login import login
2
+
3
+ import os
4
+
5
+ os.environ['HF_HOME'] = os.path.abspath(os.path.realpath(os.path.join(os.path.dirname(__file__), './hf_download')))
6
+
7
+ import gradio as gr
8
+ import torch
9
+ import traceback
10
+ import einops
11
+ import safetensors.torch as sf
12
+ import numpy as np
13
+ import argparse
14
+ import random
15
+ import math
16
+ # 20250506 pftq: Added for video input loading
17
+ import decord
18
+ # 20250506 pftq: Added for progress bars in video_encode
19
+ from tqdm import tqdm
20
+ # 20250506 pftq: Normalize file paths for Windows compatibility
21
+ import pathlib
22
+ # 20250506 pftq: for easier to read timestamp
23
+ from datetime import datetime
24
+ # 20250508 pftq: for saving prompt to mp4 comments metadata
25
+ import imageio_ffmpeg
26
+ import tempfile
27
+ import shutil
28
+ import subprocess
29
+ import spaces
30
+ from PIL import Image
31
+ from diffusers import AutoencoderKLHunyuanVideo
32
+ from transformers import LlamaModel, CLIPTextModel, LlamaTokenizerFast, CLIPTokenizer
33
+ from diffusers_helper.hunyuan import encode_prompt_conds, vae_decode, vae_encode, vae_decode_fake
34
+ from diffusers_helper.utils import save_bcthw_as_mp4, crop_or_pad_yield_mask, soft_append_bcthw, resize_and_center_crop, state_dict_weighted_merge, state_dict_offset_merge, generate_timestamp
35
+ from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked
36
+ from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan
37
+ from diffusers_helper.memory import cpu, gpu, get_cuda_free_memory_gb, move_model_to_device_with_memory_preservation, offload_model_from_device_for_memory_preservation, fake_diffusers_current_device, DynamicSwapInstaller, unload_complete_models, load_model_as_complete
38
+ from diffusers_helper.thread_utils import AsyncStream, async_run
39
+ from diffusers_helper.gradio.progress_bar import make_progress_bar_css, make_progress_bar_html
40
+ from transformers import SiglipImageProcessor, SiglipVisionModel
41
+ from diffusers_helper.clip_vision import hf_clip_vision_encode
42
+ from diffusers_helper.bucket_tools import find_nearest_bucket
43
+
44
+ parser = argparse.ArgumentParser()
45
+ parser.add_argument('--share', action='store_true')
46
+ parser.add_argument("--server", type=str, default='0.0.0.0')
47
+ parser.add_argument("--port", type=int, required=False)
48
+ parser.add_argument("--inbrowser", action='store_true')
49
+ args = parser.parse_args()
50
+
51
+ print(args)
52
+
53
+ free_mem_gb = get_cuda_free_memory_gb(gpu)
54
+ high_vram = free_mem_gb > 60
55
+
56
+ print(f'Free VRAM {free_mem_gb} GB')
57
+ print(f'High-VRAM Mode: {high_vram}')
58
+
59
+ text_encoder = LlamaModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder', torch_dtype=torch.float16).cpu()
60
+ text_encoder_2 = CLIPTextModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder_2', torch_dtype=torch.float16).cpu()
61
+ tokenizer = LlamaTokenizerFast.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer')
62
+ tokenizer_2 = CLIPTokenizer.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer_2')
63
+ vae = AutoencoderKLHunyuanVideo.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='vae', torch_dtype=torch.float16).cpu()
64
+
65
+ feature_extractor = SiglipImageProcessor.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='feature_extractor')
66
+ image_encoder = SiglipVisionModel.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='image_encoder', torch_dtype=torch.float16).cpu()
67
+
68
+ transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained('lllyasviel/FramePackI2V_HY', torch_dtype=torch.bfloat16).cpu()
69
+
70
+ vae.eval()
71
+ text_encoder.eval()
72
+ text_encoder_2.eval()
73
+ image_encoder.eval()
74
+ transformer.eval()
75
+
76
+ if not high_vram:
77
+ vae.enable_slicing()
78
+ vae.enable_tiling()
79
+
80
+ transformer.high_quality_fp32_output_for_inference = True
81
+ print('transformer.high_quality_fp32_output_for_inference = True')
82
+
83
+ transformer.to(dtype=torch.bfloat16)
84
+ vae.to(dtype=torch.float16)
85
+ image_encoder.to(dtype=torch.float16)
86
+ text_encoder.to(dtype=torch.float16)
87
+ text_encoder_2.to(dtype=torch.float16)
88
+
89
+ vae.requires_grad_(False)
90
+ text_encoder.requires_grad_(False)
91
+ text_encoder_2.requires_grad_(False)
92
+ image_encoder.requires_grad_(False)
93
+ transformer.requires_grad_(False)
94
+
95
+ if not high_vram:
96
+ # DynamicSwapInstaller is same as huggingface's enable_sequential_offload but 3x faster
97
+ DynamicSwapInstaller.install_model(transformer, device=gpu)
98
+ DynamicSwapInstaller.install_model(text_encoder, device=gpu)
99
+ else:
100
+ text_encoder.to(gpu)
101
+ text_encoder_2.to(gpu)
102
+ image_encoder.to(gpu)
103
+ vae.to(gpu)
104
+ transformer.to(gpu)
105
+
106
+ stream = AsyncStream()
107
+
108
+ outputs_folder = './outputs/'
109
+ os.makedirs(outputs_folder, exist_ok=True)
110
+
111
+ input_video_debug_value = prompt_debug_value = total_second_length_debug_value = None
112
+
113
+ # 20250506 pftq: Added function to encode input video frames into latents
114
+ @torch.no_grad()
115
+ def video_encode(video_path, resolution, no_resize, vae, vae_batch_size=16, device="cuda", width=None, height=None):
116
+ """
117
+ Encode a video into latent representations using the VAE.
118
+
119
+ Args:
120
+ video_path: Path to the input video file.
121
+ vae: AutoencoderKLHunyuanVideo model.
122
+ height, width: Target resolution for resizing frames.
123
+ vae_batch_size: Number of frames to process per batch.
124
+ device: Device for computation (e.g., "cuda").
125
+
126
+ Returns:
127
+ start_latent: Latent of the first frame (for compatibility with original code).
128
+ input_image_np: First frame as numpy array (for CLIP vision encoding).
129
+ history_latents: Latents of all frames (shape: [1, channels, frames, height//8, width//8]).
130
+ fps: Frames per second of the input video.
131
+ """
132
+ # 20250506 pftq: Normalize video path for Windows compatibility
133
+ video_path = str(pathlib.Path(video_path).resolve())
134
+ print(f"Processing video: {video_path}")
135
+
136
+ # 20250506 pftq: Check CUDA availability and fallback to CPU if needed
137
+ if device == "cuda" and not torch.cuda.is_available():
138
+ print("CUDA is not available, falling back to CPU")
139
+ device = "cpu"
140
+
141
+ try:
142
+ # 20250506 pftq: Load video and get FPS
143
+ print("Initializing VideoReader...")
144
+ vr = decord.VideoReader(video_path)
145
+ fps = vr.get_avg_fps() # Get input video FPS
146
+ num_real_frames = len(vr)
147
+ print(f"Video loaded: {num_real_frames} frames, FPS: {fps}")
148
+
149
+ # Truncate to nearest latent size (multiple of 4)
150
+ latent_size_factor = 4
151
+ num_frames = (num_real_frames // latent_size_factor) * latent_size_factor
152
+ if num_frames != num_real_frames:
153
+ print(f"Truncating video from {num_real_frames} to {num_frames} frames for latent size compatibility")
154
+ num_real_frames = num_frames
155
+
156
+ # 20250506 pftq: Read frames
157
+ print("Reading video frames...")
158
+ frames = vr.get_batch(range(num_real_frames)).asnumpy() # Shape: (num_real_frames, height, width, channels)
159
+ print(f"Frames read: {frames.shape}")
160
+
161
+ # 20250506 pftq: Get native video resolution
162
+ native_height, native_width = frames.shape[1], frames.shape[2]
163
+ print(f"Native video resolution: {native_width}x{native_height}")
164
+
165
+ # 20250506 pftq: Use native resolution if height/width not specified, otherwise use provided values
166
+ target_height = native_height if height is None else height
167
+ target_width = native_width if width is None else width
168
+
169
+ # 20250506 pftq: Adjust to nearest bucket for model compatibility
170
+ if not no_resize:
171
+ target_height, target_width = find_nearest_bucket(target_height, target_width, resolution=resolution)
172
+ print(f"Adjusted resolution: {target_width}x{target_height}")
173
+ else:
174
+ print(f"Using native resolution without resizing: {target_width}x{target_height}")
175
+
176
+ # 20250506 pftq: Preprocess frames to match original image processing
177
+ processed_frames = []
178
+ for i, frame in enumerate(frames):
179
+ #print(f"Preprocessing frame {i+1}/{num_frames}")
180
+ frame_np = resize_and_center_crop(frame, target_width=target_width, target_height=target_height)
181
+ processed_frames.append(frame_np)
182
+ processed_frames = np.stack(processed_frames) # Shape: (num_real_frames, height, width, channels)
183
+ print(f"Frames preprocessed: {processed_frames.shape}")
184
+
185
+ # 20250506 pftq: Save first frame for CLIP vision encoding
186
+ input_image_np = processed_frames[0]
187
+ end_of_input_video_image_np = processed_frames[-1]
188
+
189
+ # 20250506 pftq: Convert to tensor and normalize to [-1, 1]
190
+ print("Converting frames to tensor...")
191
+ frames_pt = torch.from_numpy(processed_frames).float() / 127.5 - 1
192
+ frames_pt = frames_pt.permute(0, 3, 1, 2) # Shape: (num_real_frames, channels, height, width)
193
+ frames_pt = frames_pt.unsqueeze(0) # Shape: (1, num_real_frames, channels, height, width)
194
+ frames_pt = frames_pt.permute(0, 2, 1, 3, 4) # Shape: (1, channels, num_real_frames, height, width)
195
+ print(f"Tensor shape: {frames_pt.shape}")
196
+
197
+ # 20250507 pftq: Save pixel frames for use in worker
198
+ input_video_pixels = frames_pt.cpu()
199
+
200
+ # 20250506 pftq: Move to device
201
+ print(f"Moving tensor to device: {device}")
202
+ frames_pt = frames_pt.to(device)
203
+ print("Tensor moved to device")
204
+
205
+ # 20250506 pftq: Move VAE to device
206
+ print(f"Moving VAE to device: {device}")
207
+ vae.to(device)
208
+ print("VAE moved to device")
209
+
210
+ # 20250506 pftq: Encode frames in batches
211
+ print(f"Encoding input video frames in VAE batch size {vae_batch_size} (reduce if memory issues here or if forcing video resolution)")
212
+ latents = []
213
+ vae.eval()
214
+ with torch.no_grad():
215
+ for i in tqdm(range(0, frames_pt.shape[2], vae_batch_size), desc="Encoding video frames", mininterval=0.1):
216
+ #print(f"Encoding batch {i//vae_batch_size + 1}: frames {i} to {min(i + vae_batch_size, frames_pt.shape[2])}")
217
+ batch = frames_pt[:, :, i:i + vae_batch_size] # Shape: (1, channels, batch_size, height, width)
218
+ try:
219
+ # 20250506 pftq: Log GPU memory before encoding
220
+ if device == "cuda":
221
+ free_mem = torch.cuda.memory_allocated() / 1024**3
222
+ #print(f"GPU memory before encoding: {free_mem:.2f} GB")
223
+ batch_latent = vae_encode(batch, vae)
224
+ # 20250506 pftq: Synchronize CUDA to catch issues
225
+ if device == "cuda":
226
+ torch.cuda.synchronize()
227
+ #print(f"GPU memory after encoding: {torch.cuda.memory_allocated() / 1024**3:.2f} GB")
228
+ latents.append(batch_latent)
229
+ #print(f"Batch encoded, latent shape: {batch_latent.shape}")
230
+ except RuntimeError as e:
231
+ print(f"Error during VAE encoding: {str(e)}")
232
+ if device == "cuda" and "out of memory" in str(e).lower():
233
+ print("CUDA out of memory, try reducing vae_batch_size or using CPU")
234
+ raise
235
+
236
+ # 20250506 pftq: Concatenate latents
237
+ print("Concatenating latents...")
238
+ history_latents = torch.cat(latents, dim=2) # Shape: (1, channels, frames, height//8, width//8)
239
+ print(f"History latents shape: {history_latents.shape}")
240
+
241
+ # 20250506 pftq: Get first frame's latent
242
+ start_latent = history_latents[:, :, :1] # Shape: (1, channels, 1, height//8, width//8)
243
+ end_of_input_video_latent = history_latents[:, :, -1:] # Shape: (1, channels, 1, height//8, width//8)
244
+ print(f"Start latent shape: {start_latent.shape}")
245
+
246
+ # 20250506 pftq: Move VAE back to CPU to free GPU memory
247
+ if device == "cuda":
248
+ vae.to(cpu)
249
+ torch.cuda.empty_cache()
250
+ print("VAE moved back to CPU, CUDA cache cleared")
251
+
252
+ return start_latent, input_image_np, history_latents, fps, target_height, target_width, input_video_pixels, end_of_input_video_latent, end_of_input_video_image_np
253
+
254
+ except Exception as e:
255
+ print(f"Error in video_encode: {str(e)}")
256
+ raise
257
+
258
+
259
+ # 20250507 pftq: New function to encode a single image (end frame)
260
+ @torch.no_grad()
261
+ def image_encode(image_np, target_width, target_height, vae, image_encoder, feature_extractor, device="cuda"):
262
+ """
263
+ Encode a single image into a latent and compute its CLIP vision embedding.
264
+
265
+ Args:
266
+ image_np: Input image as numpy array.
267
+ target_width, target_height: Exact resolution to resize the image to (matches start frame).
268
+ vae: AutoencoderKLHunyuanVideo model.
269
+ image_encoder: SiglipVisionModel for CLIP vision encoding.
270
+ feature_extractor: SiglipImageProcessor for preprocessing.
271
+ device: Device for computation (e.g., "cuda").
272
+
273
+ Returns:
274
+ latent: Latent representation of the image (shape: [1, channels, 1, height//8, width//8]).
275
+ clip_embedding: CLIP vision embedding of the image.
276
+ processed_image_np: Processed image as numpy array (after resizing).
277
+ """
278
+ # 20250507 pftq: Process end frame with exact start frame dimensions
279
+ print("Processing end frame...")
280
+ try:
281
+ print(f"Using exact start frame resolution for end frame: {target_width}x{target_height}")
282
+
283
+ # Resize and preprocess image to match start frame
284
+ processed_image_np = resize_and_center_crop(image_np, target_width=target_width, target_height=target_height)
285
+
286
+ # Convert to tensor and normalize
287
+ image_pt = torch.from_numpy(processed_image_np).float() / 127.5 - 1
288
+ image_pt = image_pt.permute(2, 0, 1).unsqueeze(0).unsqueeze(2) # Shape: [1, channels, 1, height, width]
289
+ image_pt = image_pt.to(device)
290
+
291
+ # Move VAE to device
292
+ vae.to(device)
293
+
294
+ # Encode to latent
295
+ latent = vae_encode(image_pt, vae)
296
+ print(f"image_encode vae output shape: {latent.shape}")
297
+
298
+ # Move image encoder to device
299
+ image_encoder.to(device)
300
+
301
+ # Compute CLIP vision embedding
302
+ clip_embedding = hf_clip_vision_encode(processed_image_np, feature_extractor, image_encoder).last_hidden_state
303
+
304
+ # Move models back to CPU and clear cache
305
+ if device == "cuda":
306
+ vae.to(cpu)
307
+ image_encoder.to(cpu)
308
+ torch.cuda.empty_cache()
309
+ print("VAE and image encoder moved back to CPU, CUDA cache cleared")
310
+
311
+ print(f"End latent shape: {latent.shape}")
312
+ return latent, clip_embedding, processed_image_np
313
+
314
+ except Exception as e:
315
+ print(f"Error in image_encode: {str(e)}")
316
+ raise
317
+
318
+ # 20250508 pftq: for saving prompt to mp4 metadata comments
319
+ def set_mp4_comments_imageio_ffmpeg(input_file, comments):
320
+ try:
321
+ # Get the path to the bundled FFmpeg binary from imageio-ffmpeg
322
+ ffmpeg_path = imageio_ffmpeg.get_ffmpeg_exe()
323
+
324
+ # Check if input file exists
325
+ if not os.path.exists(input_file):
326
+ print(f"Error: Input file {input_file} does not exist")
327
+ return False
328
+
329
+ # Create a temporary file path
330
+ temp_file = tempfile.NamedTemporaryFile(suffix='.mp4', delete=False).name
331
+
332
+ # FFmpeg command using the bundled binary
333
+ command = [
334
+ ffmpeg_path, # Use imageio-ffmpeg's FFmpeg
335
+ '-i', input_file, # input file
336
+ '-metadata', f'comment={comments}', # set comment metadata
337
+ '-c:v', 'copy', # copy video stream without re-encoding
338
+ '-c:a', 'copy', # copy audio stream without re-encoding
339
+ '-y', # overwrite output file if it exists
340
+ temp_file # temporary output file
341
+ ]
342
+
343
+ # Run the FFmpeg command
344
+ result = subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
345
+
346
+ if result.returncode == 0:
347
+ # Replace the original file with the modified one
348
+ shutil.move(temp_file, input_file)
349
+ print(f"Successfully added comments to {input_file}")
350
+ return True
351
+ else:
352
+ # Clean up temp file if FFmpeg fails
353
+ if os.path.exists(temp_file):
354
+ os.remove(temp_file)
355
+ print(f"Error: FFmpeg failed with message:\n{result.stderr}")
356
+ return False
357
+
358
+ except Exception as e:
359
+ # Clean up temp file in case of other errors
360
+ if 'temp_file' in locals() and os.path.exists(temp_file):
361
+ os.remove(temp_file)
362
+ print(f"Error saving prompt to video metadata, ffmpeg may be required: "+str(e))
363
+ return False
364
+
365
+ # 20250506 pftq: Modified worker to accept video input, and clean frame count
366
+ @torch.no_grad()
367
+ def worker(input_video, end_frame, end_frame_weight, prompt, n_prompt, seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, no_resize, mp4_crf, num_clean_frames, vae_batch):
368
+
369
+ stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Starting ...'))))
370
+
371
+ try:
372
+ # Clean GPU
373
+ if not high_vram:
374
+ unload_complete_models(
375
+ text_encoder, text_encoder_2, image_encoder, vae, transformer
376
+ )
377
+
378
+ # Text encoding
379
+ stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Text encoding ...'))))
380
+
381
+ if not high_vram:
382
+ fake_diffusers_current_device(text_encoder, gpu) # since we only encode one text - that is one model move and one encode, offload is same time consumption since it is also one load and one encode.
383
+ load_model_as_complete(text_encoder_2, target_device=gpu)
384
+
385
+ llama_vec, clip_l_pooler = encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
386
+
387
+ if cfg == 1:
388
+ llama_vec_n, clip_l_pooler_n = torch.zeros_like(llama_vec), torch.zeros_like(clip_l_pooler)
389
+ else:
390
+ llama_vec_n, clip_l_pooler_n = encode_prompt_conds(n_prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
391
+
392
+ llama_vec, llama_attention_mask = crop_or_pad_yield_mask(llama_vec, length=512)
393
+ llama_vec_n, llama_attention_mask_n = crop_or_pad_yield_mask(llama_vec_n, length=512)
394
+
395
+ # 20250506 pftq: Processing input video instead of image
396
+ stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Video processing ...'))))
397
+
398
+ # 20250506 pftq: Encode video
399
+ start_latent, input_image_np, video_latents, fps, height, width, input_video_pixels, end_of_input_video_latent, end_of_input_video_image_np = video_encode(input_video, resolution, no_resize, vae, vae_batch_size=vae_batch, device=gpu)
400
+
401
+ #Image.fromarray(input_image_np).save(os.path.join(outputs_folder, f'{job_id}.png'))
402
+
403
+ # CLIP Vision
404
+ stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'CLIP Vision encoding ...'))))
405
+
406
+ if not high_vram:
407
+ load_model_as_complete(image_encoder, target_device=gpu)
408
+
409
+ image_encoder_output = hf_clip_vision_encode(input_image_np, feature_extractor, image_encoder)
410
+ image_encoder_last_hidden_state = image_encoder_output.last_hidden_state
411
+ start_embedding = image_encoder_last_hidden_state
412
+
413
+ end_of_input_video_output = hf_clip_vision_encode(end_of_input_video_image_np, feature_extractor, image_encoder)
414
+ end_of_input_video_last_hidden_state = end_of_input_video_output.last_hidden_state
415
+ end_of_input_video_embedding = end_of_input_video_last_hidden_state
416
+
417
+ # 20250507 pftq: Process end frame if provided
418
+ end_latent = None
419
+ end_clip_embedding = None
420
+ if end_frame is not None:
421
+ stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'End frame encoding ...'))))
422
+ end_latent, end_clip_embedding, _ = image_encode(
423
+ end_frame, target_width=width, target_height=height, vae=vae,
424
+ image_encoder=image_encoder, feature_extractor=feature_extractor, device=gpu
425
+ )
426
+
427
+ # Dtype
428
+ llama_vec = llama_vec.to(transformer.dtype)
429
+ llama_vec_n = llama_vec_n.to(transformer.dtype)
430
+ clip_l_pooler = clip_l_pooler.to(transformer.dtype)
431
+ clip_l_pooler_n = clip_l_pooler_n.to(transformer.dtype)
432
+ image_encoder_last_hidden_state = image_encoder_last_hidden_state.to(transformer.dtype)
433
+ end_of_input_video_embedding = end_of_input_video_embedding.to(transformer.dtype)
434
+
435
+ # 20250509 pftq: Restored original placement of total_latent_sections after video_encode
436
+ total_latent_sections = (total_second_length * fps) / (latent_window_size * 4)
437
+ total_latent_sections = int(max(round(total_latent_sections), 1))
438
+
439
+ for idx in range(batch):
440
+ if batch > 1:
441
+ print(f"Beginning video {idx+1} of {batch} with seed {seed} ")
442
+
443
+ job_id = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")+f"_framepack-videoinput-endframe_{width}-{total_second_length}sec_seed-{seed}_steps-{steps}_distilled-{gs}_cfg-{cfg}"
444
+
445
+ stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Start sampling ...'))))
446
+
447
+ rnd = torch.Generator("cpu").manual_seed(seed)
448
+
449
+ history_latents = video_latents.cpu()
450
+ history_pixels = None
451
+ total_generated_latent_frames = 0
452
+ previous_video = None
453
+
454
+
455
+ # 20250509 Generate backwards with end frame for better end frame anchoring
456
+ if total_latent_sections > 4:
457
+ latent_paddings = [3] + [2] * (total_latent_sections - 3) + [1, 0]
458
+ else:
459
+ latent_paddings = list(reversed(range(total_latent_sections)))
460
+
461
+ for section_index, latent_padding in enumerate(latent_paddings):
462
+ is_start_of_video = latent_padding == 0
463
+ is_end_of_video = latent_padding == latent_paddings[0]
464
+ latent_padding_size = latent_padding * latent_window_size
465
+
466
+ if stream.input_queue.top() == 'end':
467
+ stream.output_queue.push(('end', None))
468
+ return
469
+
470
+ if not high_vram:
471
+ unload_complete_models()
472
+ move_model_to_device_with_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=gpu_memory_preservation)
473
+
474
+ if use_teacache:
475
+ transformer.initialize_teacache(enable_teacache=True, num_steps=steps)
476
+ else:
477
+ transformer.initialize_teacache(enable_teacache=False)
478
+
479
+ def callback(d):
480
+ try:
481
+ preview = d['denoised']
482
+ preview = vae_decode_fake(preview)
483
+ preview = (preview * 255.0).detach().cpu().numpy().clip(0, 255).astype(np.uint8)
484
+ preview = einops.rearrange(preview, 'b c t h w -> (b h) (t w) c')
485
+ if stream.input_queue.top() == 'end':
486
+ stream.output_queue.push(('end', None))
487
+ raise KeyboardInterrupt('User ends the task.')
488
+ current_step = d['i'] + 1
489
+ percentage = int(100.0 * current_step / steps)
490
+ hint = f'Sampling {current_step}/{steps}'
491
+ desc = f'Total frames: {int(max(0, total_generated_latent_frames * 4 - 3))}, Video length: {max(0, (total_generated_latent_frames * 4 - 3) / fps) :.2f} seconds (FPS-{fps}), Seed: {seed}, Video {idx+1} of {batch}. Generating part {total_latent_sections - section_index} of {total_latent_sections} backward...'
492
+ stream.output_queue.push(('progress', (preview, desc, make_progress_bar_html(percentage, hint))))
493
+ except ConnectionResetError as e:
494
+ print(f"Suppressed ConnectionResetError in callback: {e}")
495
+ return
496
+
497
+ # 20250509 pftq: Dynamic frame allocation like original num_clean_frames, fix split error
498
+ available_frames = video_latents.shape[2] if is_start_of_video else history_latents.shape[2]
499
+ if is_start_of_video:
500
+ effective_clean_frames = 1 # avoid jumpcuts from input video
501
+ else:
502
+ effective_clean_frames = max(0, num_clean_frames - 1) if num_clean_frames > 1 else 1
503
+ clean_latent_pre_frames = effective_clean_frames
504
+ num_2x_frames = min(2, max(1, available_frames - clean_latent_pre_frames - 1)) if available_frames > clean_latent_pre_frames + 1 else 1
505
+ num_4x_frames = min(16, max(1, available_frames - clean_latent_pre_frames - num_2x_frames)) if available_frames > clean_latent_pre_frames + num_2x_frames else 1
506
+ total_context_frames = num_2x_frames + num_4x_frames
507
+ total_context_frames = min(total_context_frames, available_frames - clean_latent_pre_frames)
508
+
509
+ # 20250511 pftq: Dynamically adjust post_frames based on clean_latents_post
510
+ post_frames = 1 if is_end_of_video and end_latent is not None else effective_clean_frames # 20250511 pftq: Single frame for end_latent, otherwise padding causes still image
511
+ indices = torch.arange(0, clean_latent_pre_frames + latent_padding_size + latent_window_size + post_frames + num_2x_frames + num_4x_frames).unsqueeze(0)
512
+ clean_latent_indices_pre, blank_indices, latent_indices, clean_latent_indices_post, clean_latent_2x_indices, clean_latent_4x_indices = indices.split(
513
+ [clean_latent_pre_frames, latent_padding_size, latent_window_size, post_frames, num_2x_frames, num_4x_frames], dim=1
514
+ )
515
+ clean_latent_indices = torch.cat([clean_latent_indices_pre, clean_latent_indices_post], dim=1)
516
+
517
+ # 20250509 pftq: Split context frames dynamically for 2x and 4x only
518
+ context_frames = history_latents[:, :, -(total_context_frames + clean_latent_pre_frames):-clean_latent_pre_frames, :, :] if total_context_frames > 0 else history_latents[:, :, :1, :, :]
519
+ split_sizes = [num_4x_frames, num_2x_frames]
520
+ split_sizes = [s for s in split_sizes if s > 0]
521
+ if split_sizes and context_frames.shape[2] >= sum(split_sizes):
522
+ splits = context_frames.split(split_sizes, dim=2)
523
+ split_idx = 0
524
+ clean_latents_4x = splits[split_idx] if num_4x_frames > 0 else history_latents[:, :, :1, :, :]
525
+ split_idx += 1 if num_4x_frames > 0 else 0
526
+ clean_latents_2x = splits[split_idx] if num_2x_frames > 0 and split_idx < len(splits) else history_latents[:, :, :1, :, :]
527
+ else:
528
+ clean_latents_4x = clean_latents_2x = history_latents[:, :, :1, :, :]
529
+
530
+ clean_latents_pre = video_latents[:, :, -min(effective_clean_frames, video_latents.shape[2]):].to(history_latents) # smoother motion but jumpcuts if end frame is too different, must change clean_latent_pre_frames to effective_clean_frames also
531
+ clean_latents_post = history_latents[:, :, :min(effective_clean_frames, history_latents.shape[2]), :, :] # smoother motion, must change post_frames to effective_clean_frames also
532
+
533
+ if is_end_of_video:
534
+ clean_latents_post = torch.zeros_like(end_of_input_video_latent).to(history_latents)
535
+
536
+ # 20250509 pftq: handle end frame if available
537
+ if end_latent is not None:
538
+ #current_end_frame_weight = end_frame_weight * (latent_padding / latent_paddings[0])
539
+ #current_end_frame_weight = current_end_frame_weight * 0.5 + 0.5
540
+ current_end_frame_weight = end_frame_weight # changing this over time introduces discontinuity
541
+ # 20250511 pftq: Removed end frame weight adjustment as it has no effect
542
+ image_encoder_last_hidden_state = (1 - current_end_frame_weight) * end_of_input_video_embedding + end_clip_embedding * current_end_frame_weight
543
+ image_encoder_last_hidden_state = image_encoder_last_hidden_state.to(transformer.dtype)
544
+
545
+ # 20250511 pftq: Use end_latent only
546
+ if is_end_of_video:
547
+ clean_latents_post = end_latent.to(history_latents)[:, :, :1, :, :] # Ensure single frame
548
+
549
+ # 20250511 pftq: Pad clean_latents_pre to match clean_latent_pre_frames if needed
550
+ if clean_latents_pre.shape[2] < clean_latent_pre_frames:
551
+ clean_latents_pre = clean_latents_pre.repeat(1, 1, clean_latent_pre_frames // clean_latents_pre.shape[2], 1, 1)
552
+ # 20250511 pftq: Pad clean_latents_post to match post_frames if needed
553
+ if clean_latents_post.shape[2] < post_frames:
554
+ clean_latents_post = clean_latents_post.repeat(1, 1, post_frames // clean_latents_post.shape[2], 1, 1)
555
+
556
+ clean_latents = torch.cat([clean_latents_pre, clean_latents_post], dim=2)
557
+
558
+ max_frames = min(latent_window_size * 4 - 3, history_latents.shape[2] * 4)
559
+ print(f"Generating video {idx+1} of {batch} with seed {seed}, part {total_latent_sections - section_index} of {total_latent_sections} backward")
560
+ generated_latents = sample_hunyuan(
561
+ transformer=transformer,
562
+ sampler='unipc',
563
+ width=width,
564
+ height=height,
565
+ frames=max_frames,
566
+ real_guidance_scale=cfg,
567
+ distilled_guidance_scale=gs,
568
+ guidance_rescale=rs,
569
+ num_inference_steps=steps,
570
+ generator=rnd,
571
+ prompt_embeds=llama_vec,
572
+ prompt_embeds_mask=llama_attention_mask,
573
+ prompt_poolers=clip_l_pooler,
574
+ negative_prompt_embeds=llama_vec_n,
575
+ negative_prompt_embeds_mask=llama_attention_mask_n,
576
+ negative_prompt_poolers=clip_l_pooler_n,
577
+ device=gpu,
578
+ dtype=torch.bfloat16,
579
+ image_embeddings=image_encoder_last_hidden_state,
580
+ latent_indices=latent_indices,
581
+ clean_latents=clean_latents,
582
+ clean_latent_indices=clean_latent_indices,
583
+ clean_latents_2x=clean_latents_2x,
584
+ clean_latent_2x_indices=clean_latent_2x_indices,
585
+ clean_latents_4x=clean_latents_4x,
586
+ clean_latent_4x_indices=clean_latent_4x_indices,
587
+ callback=callback,
588
+ )
589
+
590
+ if is_start_of_video:
591
+ generated_latents = torch.cat([video_latents[:, :, -1:].to(generated_latents), generated_latents], dim=2)
592
+
593
+ total_generated_latent_frames += int(generated_latents.shape[2])
594
+ history_latents = torch.cat([generated_latents.to(history_latents), history_latents], dim=2)
595
+
596
+ if not high_vram:
597
+ offload_model_from_device_for_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=8)
598
+ load_model_as_complete(vae, target_device=gpu)
599
+
600
+ real_history_latents = history_latents[:, :, :total_generated_latent_frames, :, :]
601
+ if history_pixels is None:
602
+ history_pixels = vae_decode(real_history_latents, vae).cpu()
603
+ else:
604
+ section_latent_frames = (latent_window_size * 2 + 1) if is_start_of_video else (latent_window_size * 2)
605
+ overlapped_frames = latent_window_size * 4 - 3
606
+ current_pixels = vae_decode(real_history_latents[:, :, :section_latent_frames], vae).cpu()
607
+ history_pixels = soft_append_bcthw(current_pixels, history_pixels, overlapped_frames)
608
+
609
+ if not high_vram:
610
+ unload_complete_models()
611
+
612
+ output_filename = os.path.join(outputs_folder, f'{job_id}_{total_generated_latent_frames}.mp4')
613
+ save_bcthw_as_mp4(history_pixels, output_filename, fps=fps, crf=mp4_crf)
614
+ print(f"Latest video saved: {output_filename}")
615
+ set_mp4_comments_imageio_ffmpeg(output_filename, f"Prompt: {prompt} | Negative Prompt: {n_prompt}")
616
+ print(f"Prompt saved to mp4 metadata comments: {output_filename}")
617
+
618
+ if previous_video is not None and os.path.exists(previous_video):
619
+ try:
620
+ os.remove(previous_video)
621
+ print(f"Previous partial video deleted: {previous_video}")
622
+ except Exception as e:
623
+ print(f"Error deleting previous partial video {previous_video}: {e}")
624
+ previous_video = output_filename
625
+
626
+ print(f'Decoded. Current latent shape {real_history_latents.shape}; pixel shape {history_pixels.shape}')
627
+ stream.output_queue.push(('file', output_filename))
628
+
629
+ if is_start_of_video:
630
+ break
631
+
632
+ history_pixels = torch.cat([input_video_pixels, history_pixels], dim=2)
633
+ #overlapped_frames = latent_window_size * 4 - 3
634
+ #history_pixels = soft_append_bcthw(input_video_pixels, history_pixels, overlapped_frames)
635
+
636
+ output_filename = os.path.join(outputs_folder, f'{job_id}_final.mp4')
637
+ save_bcthw_as_mp4(history_pixels, output_filename, fps=fps, crf=mp4_crf)
638
+ print(f"Final video with input blend saved: {output_filename}")
639
+ set_mp4_comments_imageio_ffmpeg(output_filename, f"Prompt: {prompt} | Negative Prompt: {n_prompt}")
640
+ print(f"Prompt saved to mp4 metadata comments: {output_filename}")
641
+ stream.output_queue.push(('file', output_filename))
642
+
643
+ if previous_video is not None and os.path.exists(previous_video):
644
+ try:
645
+ os.remove(previous_video)
646
+ print(f"Previous partial video deleted: {previous_video}")
647
+ except Exception as e:
648
+ print(f"Error deleting previous partial video {previous_video}: {e}")
649
+ previous_video = output_filename
650
+
651
+ print(f'Decoded. Current latent shape {real_history_latents.shape}; pixel shape {history_pixels.shape}')
652
+
653
+ stream.output_queue.push(('file', output_filename))
654
+
655
+ seed = (seed + 1) % np.iinfo(np.int32).max
656
+
657
+ except:
658
+ traceback.print_exc()
659
+
660
+ if not high_vram:
661
+ unload_complete_models(
662
+ text_encoder, text_encoder_2, image_encoder, vae, transformer
663
+ )
664
+
665
+ stream.output_queue.push(('end', None))
666
+ return
667
+
668
+ # 20250506 pftq: Modified process to pass clean frame count, etc
669
+ def get_duration(
670
+ input_video, end_frame, end_frame_weight, prompt, n_prompt,
671
+ randomize_seed,
672
+ seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache,
673
+ no_resize, mp4_crf, num_clean_frames, vae_batch):
674
+ global total_second_length_debug_value
675
+ if total_second_length_debug_value is not None:
676
+ return min(total_second_length_debug_value * 60 * 2, 600)
677
+ return total_second_length * 60 * 2
678
+
679
+ @spaces.GPU(duration=get_duration)
680
+ def process(
681
+ input_video, end_frame, end_frame_weight, prompt, n_prompt,
682
+ randomize_seed,
683
+ seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache,
684
+ no_resize, mp4_crf, num_clean_frames, vae_batch):
685
+ global stream, high_vram, input_video_debug_value, prompt_debug_value, total_second_length_debug_value
686
+
687
+ if torch.cuda.device_count() == 0:
688
+ gr.Warning('Set this space to GPU config to make it work.')
689
+ return None, None, None, None, None, None
690
+
691
+ if input_video_debug_value is not None or prompt_debug_value is not None or total_second_length_debug_value is not None:
692
+ input_video = input_video_debug_value
693
+ prompt = prompt_debug_value
694
+ total_second_length = total_second_length_debug_value
695
+ input_video_debug_value = prompt_debug_value = total_second_length_debug_value = None
696
+
697
+ if randomize_seed:
698
+ seed = random.randint(0, np.iinfo(np.int32).max)
699
+
700
+ # 20250506 pftq: Updated assertion for video input
701
+ assert input_video is not None, 'No input video!'
702
+
703
+ yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True)
704
+
705
+ # 20250507 pftq: Even the H100 needs offloading if the video dimensions are 720p or higher
706
+ if high_vram and (no_resize or resolution>640):
707
+ print("Disabling high vram mode due to no resize and/or potentially higher resolution...")
708
+ high_vram = False
709
+ vae.enable_slicing()
710
+ vae.enable_tiling()
711
+ DynamicSwapInstaller.install_model(transformer, device=gpu)
712
+ DynamicSwapInstaller.install_model(text_encoder, device=gpu)
713
+
714
+ # 20250508 pftq: automatically set distilled cfg to 1 if cfg is used
715
+ if cfg > 1:
716
+ gs = 1
717
+
718
+ stream = AsyncStream()
719
+
720
+ # 20250506 pftq: Pass num_clean_frames, vae_batch, etc
721
+ async_run(worker, input_video, end_frame, end_frame_weight, prompt, n_prompt, seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, no_resize, mp4_crf, num_clean_frames, vae_batch)
722
+
723
+ output_filename = None
724
+
725
+ while True:
726
+ flag, data = stream.output_queue.next()
727
+
728
+ if flag == 'file':
729
+ output_filename = data
730
+ yield output_filename, gr.update(), gr.update(), gr.update(), gr.update(interactive=False), gr.update(interactive=True)
731
+
732
+ if flag == 'progress':
733
+ preview, desc, html = data
734
+ #yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True)
735
+ yield output_filename, gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True) # 20250506 pftq: Keep refreshing the video in case it got hidden when the tab was in the background
736
+
737
+ if flag == 'end':
738
+ yield output_filename, gr.update(visible=False), desc+' Video complete.', '', gr.update(interactive=True), gr.update(interactive=False)
739
+ break
740
+
741
+ def end_process():
742
+ stream.input_queue.push('end')
743
+
744
+ quick_prompts = [
745
+ 'The girl dances gracefully, with clear movements, full of charm.',
746
+ 'A character doing some simple body movements.',
747
+ ]
748
+ quick_prompts = [[x] for x in quick_prompts]
749
+
750
+ css = make_progress_bar_css()
751
+ block = gr.Blocks(css=css).queue(
752
+ max_size=10 # 20250507 pftq: Limit queue size
753
+ )
754
+ with block:
755
+ if torch.cuda.device_count() == 0:
756
+ with gr.Row():
757
+ gr.HTML("""
758
+ <p style="background-color: red;"><big><big><big><b>⚠️To use FramePack, <a href="https://huggingface.co/spaces/Fabrice-TIERCELIN/SUPIR?duplicate=true">duplicate this space</a> and set a GPU with 30 GB VRAM.</b>
759
+
760
+ You can't use FramePack directly here because this space runs on a CPU, which is not enough for FramePack. Please provide <a href="https://huggingface.co/spaces/Fabrice-TIERCELIN/SUPIR/discussions/new">feedback</a> if you have issues.
761
+ </big></big></big></p>
762
+ """)
763
+ # 20250506 pftq: Updated title to reflect video input functionality
764
+ gr.Markdown('# Framepack with Video Input (Video Extension) + End Frame')
765
+ with gr.Row():
766
+ with gr.Column():
767
+
768
+ # 20250506 pftq: Changed to Video input from Image
769
+ with gr.Row():
770
+ input_video = gr.Video(sources='upload', label="Input Video", height=320)
771
+ with gr.Column():
772
+ # 20250507 pftq: Added end_frame + weight
773
+ end_frame = gr.Image(sources='upload', type="numpy", label="End Frame (Optional) - Reduce context frames if very different from input video or if it is jumpcutting/slowing to still image.", height=320)
774
+ end_frame_weight = gr.Slider(label="End Frame Weight", minimum=0.0, maximum=1.0, value=1.0, step=0.01, info='Reduce to treat more as a reference image; no effect')
775
+
776
+ prompt = gr.Textbox(label="Prompt", value='')
777
+
778
+ with gr.Row():
779
+ start_button = gr.Button(value="Start Generation", variant="primary")
780
+ end_button = gr.Button(value="End Generation", variant="stop", interactive=False)
781
+
782
+ with gr.Accordion("Advanced settings", open=False):
783
+ with gr.Row():
784
+ use_teacache = gr.Checkbox(label='Use TeaCache', value=True, info='Faster speed, but often makes hands and fingers slightly worse.')
785
+ no_resize = gr.Checkbox(label='Force Original Video Resolution (No Resizing)', value=False, info='Might run out of VRAM (720p requires > 24GB VRAM).')
786
+
787
+ randomize_seed = gr.Checkbox(label='Randomize seed', value=True, info='If checked, the seed is always different')
788
+ seed = gr.Slider(label="Seed", minimum=0, maximum=np.iinfo(np.int32).max, step=1, randomize=True)
789
+
790
+ batch = gr.Slider(label="Batch Size (Number of Videos)", minimum=1, maximum=1000, value=1, step=1, info='Generate multiple videos each with a different seed.')
791
+
792
+ resolution = gr.Number(label="Resolution (max width or height)", value=640, precision=0)
793
+
794
+ total_second_length = gr.Slider(label="Additional Video Length to Generate (Seconds)", minimum=1, maximum=120, value=5, step=0.1)
795
+
796
+ # 20250506 pftq: Reduced default distilled guidance scale to improve adherence to input video
797
+ gs = gr.Slider(label="Distilled CFG Scale", minimum=1.0, maximum=32.0, value=10.0, step=0.01, info='Prompt adherence at the cost of less details from the input video, but to a lesser extent than Context Frames.')
798
+ cfg = gr.Slider(label="CFG Scale", minimum=1.0, maximum=32.0, value=1.0, step=0.01, info='Use instead of Distilled for more detail/control + Negative Prompt (make sure Distilled=1). Doubles render time.') # Should not change
799
+ rs = gr.Slider(label="CFG Re-Scale", minimum=0.0, maximum=1.0, value=0.0, step=0.01) # Should not change
800
+
801
+ n_prompt = gr.Textbox(label="Negative Prompt", value="Missing arm, unrealistic position, blurred, blurry", info='Requires using normal CFG (undistilled) instead of Distilled (set Distilled=1 and CFG > 1).')
802
+
803
+ steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=25, step=1, info='Expensive. Increase for more quality, especially if using high non-distilled CFG.')
804
+
805
+ # 20250506 pftq: Renamed slider to Number of Context Frames and updated description
806
+ num_clean_frames = gr.Slider(label="Number of Context Frames (Adherence to Video)", minimum=2, maximum=10, value=5, step=1, info="Expensive. Retain more video details. Reduce if memory issues or motion too restricted (jumpcut, ignoring prompt, still).")
807
+
808
+ default_vae = 32
809
+ if high_vram:
810
+ default_vae = 128
811
+ elif free_mem_gb>=20:
812
+ default_vae = 64
813
+
814
+ vae_batch = gr.Slider(label="VAE Batch Size for Input Video", minimum=4, maximum=256, value=default_vae, step=4, info="Expensive. Increase for better quality frames during fast motion. Reduce if running out of memory")
815
+
816
+ latent_window_size = gr.Slider(label="Latent Window Size", minimum=9, maximum=49, value=9, step=1, info='Expensive. Generate more frames at a time (larger chunks). Less degradation but higher VRAM cost.')
817
+
818
+ gpu_memory_preservation = gr.Slider(label="GPU Inference Preserved Memory (GB) (larger means slower)", minimum=6, maximum=128, value=6, step=0.1, info="Set this number to a larger value if you encounter OOM. Larger value causes slower speed.")
819
+
820
+ mp4_crf = gr.Slider(label="MP4 Compression", minimum=0, maximum=100, value=16, step=1, info="Lower means better quality. 0 is uncompressed. Change to 16 if you get black outputs. ")
821
+
822
+ with gr.Accordion("Debug", open=False):
823
+ input_video_debug = gr.Video(sources='upload', label="Input Video Debug", height=320)
824
+ prompt_debug = gr.Textbox(label="Prompt Debug", value='')
825
+ total_second_length_debug = gr.Slider(label="Additional Video Length to Generate (Seconds) Debug", minimum=1, maximum=120, value=5, step=0.1)
826
+
827
+ with gr.Column():
828
+ preview_image = gr.Image(label="Next Latents", height=200, visible=False)
829
+ result_video = gr.Video(label="Finished Frames", autoplay=True, show_share_button=False, height=512, loop=True)
830
+ progress_desc = gr.Markdown('', elem_classes='no-generating-animation')
831
+ progress_bar = gr.HTML('', elem_classes='no-generating-animation')
832
+
833
+ with gr.Row(visible=False):
834
+ gr.Examples(
835
+ examples = [
836
+ [
837
+ "./img_examples/Example1.mp4", # input_video
838
+ None, # end_frame
839
+ 0.0, # end_frame_weight
840
+ "View of the sea as far as the eye can see, from the seaside, a piece of land is barely visible on the horizon at the middle, the sky is radiant, reflections of the sun in the water, photorealistic, realistic, intricate details, 8k, insanely detailed",
841
+ "Missing arm, unrealistic position, blurred, blurry", # n_prompt
842
+ True, # randomize_seed
843
+ 42, # seed
844
+ 1, # batch
845
+ 640, # resolution
846
+ 1, # total_second_length
847
+ 9, # latent_window_size
848
+ 25, # steps
849
+ 1.0, # cfg
850
+ 10.0, # gs
851
+ 0.0, # rs
852
+ 6, # gpu_memory_preservation
853
+ True, # use_teacache
854
+ False, # no_resize
855
+ 16, # mp4_crf
856
+ 5, # num_clean_frames
857
+ default_vae
858
+ ],
859
+ ],
860
+ run_on_click = True,
861
+ fn = process,
862
+ inputs = [input_video, end_frame, end_frame_weight, prompt, n_prompt, randomize_seed, seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, no_resize, mp4_crf, num_clean_frames, vae_batch],
863
+ outputs = [result_video, preview_image, progress_desc, progress_bar, start_button, end_button],
864
+ cache_examples = True,
865
+ )
866
+
867
+ # 20250506 pftq: Updated inputs to include num_clean_frames
868
+ ips = [input_video, end_frame, end_frame_weight, prompt, n_prompt, randomize_seed, seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, no_resize, mp4_crf, num_clean_frames, vae_batch]
869
+ start_button.click(fn=process, inputs=ips, outputs=[result_video, preview_image, progress_desc, progress_bar, start_button, end_button])
870
+ end_button.click(fn=end_process)
871
+
872
+
873
+ def handle_field_debug_change(input_video_debug_data, prompt_debug_data, total_second_length_debug_data):
874
+ global input_video_debug_value, prompt_debug_value, total_second_length_debug_value
875
+ input_video_debug_value = input_video_debug_data
876
+ prompt_debug_value = prompt_debug_data
877
+ total_second_length_debug_value = total_second_length_debug_data
878
+ return []
879
+
880
+ input_video_debug.upload(
881
+ fn=handle_field_debug_change,
882
+ inputs=[input_video_debug, prompt_debug, total_second_length_debug],
883
+ outputs=[]
884
+ )
885
+
886
+ prompt_debug.change(
887
+ fn=handle_field_debug_change,
888
+ inputs=[input_video_debug, prompt_debug, total_second_length_debug],
889
+ outputs=[]
890
+ )
891
+
892
+ total_second_length_debug.change(
893
+ fn=handle_field_debug_change,
894
+ inputs=[input_video_debug, prompt_debug, total_second_length_debug],
895
+ outputs=[]
896
+ )
897
+
898
+ block.launch(share=True)