File size: 9,110 Bytes
46dcd1d
2314f9b
 
 
 
 
72284aa
2314f9b
72284aa
2314f9b
 
 
72284aa
6c8ab7b
 
ea0d88d
2314f9b
72284aa
2314f9b
 
 
72284aa
 
2314f9b
72284aa
2314f9b
72284aa
 
2314f9b
 
72284aa
2314f9b
 
72284aa
 
 
2314f9b
72284aa
2314f9b
 
 
 
 
 
 
 
 
 
 
72284aa
2314f9b
72284aa
2314f9b
 
 
 
72284aa
 
 
2314f9b
72284aa
ea0d88d
2314f9b
 
 
72284aa
2314f9b
 
72284aa
 
2314f9b
 
 
72284aa
2314f9b
 
 
 
72284aa
2314f9b
 
72284aa
2314f9b
 
 
 
 
 
72284aa
 
 
 
2314f9b
72284aa
2314f9b
72284aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79a0d4b
72284aa
 
 
 
 
 
 
 
 
 
 
 
79a0d4b
72284aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2314f9b
 
 
79a0d4b
2314f9b
72284aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import spaces
import gradio as gr
import os
import torch
import numpy as np
import cv2
import huggingface_hub
import matplotlib.pyplot as plt
from PIL import Image
from sam2.build_sam import build_sam2
from sam2.sam2_image_predictor import SAM2ImagePredictor


# # Remove all CUDA-specific configurations
# torch.autocast(device_type="cpu", dtype=torch.float32).__enter__()

def preprocess_image(image):
    return image, gr.State([]), gr.State([]), image

def get_point(point_type, tracking_points, trackings_input_label, first_frame_path, evt: gr.SelectData):
    print(f"You selected {evt.value} at {evt.index} from {evt.target}")
    tracking_points.value.append(evt.index)
    print(f"TRACKING POINT: {tracking_points.value}")
    if point_type == "include":
        trackings_input_label.value.append(1)
    elif point_type == "exclude":
        trackings_input_label.value.append(0)
    print(f"TRACKING INPUT LABEL: {trackings_input_label.value}")
    transparent_background = Image.open(first_frame_path).convert('RGBA')
    w, h = transparent_background.size
    fraction = 0.02
    radius = int(fraction * min(w, h))
    transparent_layer = np.zeros((h, w, 4), dtype=np.uint8)
    for index, track in enumerate(tracking_points.value):
        if trackings_input_label.value[index] == 1:
            cv2.circle(transparent_layer, track, radius, (0, 255, 0, 255), -1)
        else:
            cv2.circle(transparent_layer, track, radius, (255, 0, 0, 255), -1)
    transparent_layer = Image.fromarray(transparent_layer, 'RGBA')
    selected_point_map = Image.alpha_composite(transparent_background, transparent_layer)
    return tracking_points, trackings_input_label, selected_point_map

def show_mask(mask, ax, random_color=False, borders=True):
    if random_color:
        color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
    else:
        color = np.array([30/255, 144/255, 255/255, 0.6])
    h, w = mask.shape[-2:]
    mask = mask.astype(np.uint8)
    mask_image =  mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
    if borders:
        contours, _= cv2.findContours(mask,cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
        contours = [cv2.approxPolyDP(contour, epsilon=0.01, closed=True) for contour in contours]
        mask_image = cv2.drawContours(mask_image, contours, -1, (1, 1, 1, 0.5), thickness=2)
    ax.imshow(mask_image)

def show_points(coords, labels, ax, marker_size=200):
    pos_points = coords[labels==1]
    neg_points = coords[labels==0]
    ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
    ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)   

def show_box(box, ax):
    x0, y0 = box[0], box[1]
    w, h = box[2] - box[0], box[3] - box[1]
    ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0, 0, 0, 0), lw=2))    

def show_masks(image, masks, scores, point_coords=None, box_coords=None, input_labels=None, borders=True):
    combined_images = []  
    mask_images = []      
    for i, (mask, score) in enumerate(zip(masks, scores)):
        plt.figure(figsize=(10, 10))
        plt.imshow(image)
        show_mask(mask, plt.gca(), borders=borders)
        plt.axis('off')
        combined_filename = f"combined_image_{i+1}.jpg"
        plt.savefig(combined_filename, format='jpg', bbox_inches='tight')
        combined_images.append(combined_filename)
        plt.close()
        mask_image = np.zeros_like(image, dtype=np.uint8)
        mask_layer = (mask > 0).astype(np.uint8) * 255
        for c in range(3):
            mask_image[:, :, c] = mask_layer
        mask_filename = f"mask_image_{i+1}.png"
        Image.fromarray(mask_image).save(mask_filename)
        mask_images.append(mask_filename)
    return combined_images, mask_images

def expand_contract_mask(mask, px, expand=True):
    kernel = np.ones((px, px), np.uint8)
    if expand:
        return cv2.dilate(mask, kernel, iterations=1)
    else:
        return cv2.erode(mask, kernel, iterations=1)

def feather_mask(mask, feather_size=10):
    feathered_mask = mask.copy()
    Feathered_region = mask > 0
    Feathered_region = cv2.dilate(Feathered_region.astype(np.uint8), np.ones((feather_size, feather_size), np.uint8), iterations=1)
    Feathered_region = Feathered_region & (~mask.astype(bool))
    
    for i in range(1, feather_size + 1):
        weight = i / (feather_size + 1)
        feathered_mask[Feathered_region] = feathered_mask[Feathered_region] * (1 - weight) + weight

    return feathered_mask

def process_mask(mask, expand_contract_px, expand, feathering_enabled, feather_size):
    if expand_contract_px > 0:
        mask = expand_contract_mask(mask, expand_contract_px, expand)
    if feathering_enabled:
        mask = feather_mask(mask, feather_size)
    return mask

@spaces.GPU()
def sam_process(input_image, checkpoint, tracking_points, trackings_input_label, expand_contract_px, expand, feathering_enabled, feather_size):
    image = Image.open(input_image)
    image = np.array(image.convert("RGB"))
    sam21_hfmap = {
        "tiny": "facebook/sam2.1-hiera-tiny",
        "small": "facebook/sam2.1-hiera-small",
        "base-plus": "facebook/sam2.1-hiera-base-plus",
        "large": "facebook/sam2.1-hiera-large",
    }
    # sam2_checkpoint, model_cfg = checkpoint_map[checkpoint]
    # Use CPU for both model and computations
    # sam2_model = build_sam2(model_cfg, sam2_checkpoint, device="cpu")
    predictor = SAM2ImagePredictor.from_pretrained(sam21_hfmap[checkpoint], device="cuda")

    # predictor = SAM2ImagePredictor(sam2_model)
    predictor.set_image(image)
    input_point = np.array(tracking_points.value)
    input_label = np.array(trackings_input_label.value)
    masks, scores, logits = predictor.predict(
        point_coords=input_point,
        point_labels=input_label,
        multimask_output=False,
    )
    sorted_ind = np.argsort(scores)[::-1]
    masks = masks[sorted_ind]
    scores = scores[sorted_ind]
    processed_masks = []
    for mask in masks:
        processed_mask = process_mask(mask, expand_contract_px, expand, feathering_enabled, feather_size)
        processed_masks.append(processed_mask)
    results, mask_results = show_masks(image, processed_masks, scores,
                                     point_coords=input_point,
                                     input_labels=input_label,
                                     borders=True)
    return results[0], mask_results[0]

with gr.Blocks() as demo:
    first_frame_path = gr.State()
    tracking_points = gr.State([])
    trackings_input_label = gr.State([])
    with gr.Column():
        gr.Markdown("# SAM2 Image Predictor / Masking Assistant")
        with gr.Row():
            with gr.Column():
                input_image = gr.Image(label="input image", interactive=False, type="filepath", visible=False)                 
                points_map = gr.Image(label="points map", type="filepath", interactive=True)
                with gr.Row():
                    point_type = gr.Radio(label="point type", choices=["include", "exclude"], value="include")
                    clear_points_btn = gr.Button("Clear Points")
                checkpoint = gr.Dropdown(label="Checkpoint", choices=["tiny", "small", "base-plus", "large"], value="base-plus")
                with gr.Row():
                    expand_contract_px = gr.Slider(minimum=0, maximum=50, value=0, label="Expand/Contract (pixels)")
                    expand = gr.Radio(["Expand", "Contract"], value="Expand", label="Action")
                with gr.Row():
                    feathering_enabled = gr.Checkbox(value=False, label="Enable Feathering")
                    feather_size = gr.Slider(minimum=1, maximum=50, value=10, label="Feathering Size", visible=False)
                submit_btn = gr.Button("Submit")
            with gr.Column():
                output_result = gr.Image()
                output_result_mask = gr.Image()
    clear_points_btn.click(
        fn=preprocess_image,
        inputs=input_image,
        outputs=[first_frame_path, tracking_points, trackings_input_label, points_map],
        queue=False
    )
    points_map.upload(
        fn=preprocess_image,
        inputs=[points_map],
        outputs=[first_frame_path, tracking_points, trackings_input_label, input_image],
        queue=False
    )
    points_map.select(
        fn=get_point,
        inputs=[point_type, tracking_points, trackings_input_label, first_frame_path],
        outputs=[tracking_points, trackings_input_label, points_map],
        queue=False
    )
    submit_btn.click(
        fn=sam_process,
        inputs=[input_image, checkpoint, tracking_points, trackings_input_label, expand_contract_px, expand, feathering_enabled, feather_size],
        outputs=[output_result, output_result_mask]
    )
    feathering_enabled.change(
        fn=lambda enabled: gr.update(visible=enabled),
        inputs=[feathering_enabled],
        outputs=[feather_size]
    )

demo.launch(show_error=True)