Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import gradio as gr | |
import torch | |
from diffusers import AutoencoderKL, TCDScheduler | |
from diffusers.models.model_loading_utils import load_state_dict | |
from gradio_imageslider import ImageSlider | |
from huggingface_hub import hf_hub_download | |
from controlnet_union import ControlNetModel_Union | |
from pipeline_fill_sd_xl import StableDiffusionXLFillPipeline | |
from gradio_image_prompter import ImagePrompter | |
from PIL import Image, ImageDraw | |
import numpy as np | |
# from sam2.sam2_image_predictor import SAM2ImagePredictor | |
# from sam2_mask import create_sam2_tab | |
import subprocess | |
import os | |
import sam2_mask | |
subprocess.run("rm -rf /data-nvme/zerogpu-offload/*", env={}, shell=True) | |
HF_TOKEN = os.environ["HF_TOKEN"] | |
# class SAM2PredictorSingleton: | |
# _instance = None | |
# def __new__(cls): | |
# if cls._instance is None: | |
# cls._instance = super(SAM2PredictorSingleton, cls).__new__(cls) | |
# cls._instance._initialize_predictor() | |
# return cls._instance | |
# def _initialize_predictor(self): | |
# MODEL = "facebook/sam2-hiera-large" | |
# DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
# self.predictor = SAM2ImagePredictor.from_pretrained(MODEL, device=DEVICE) | |
PREDICTOR = None | |
MODELS = { | |
"RealVisXL V5.0 Lightning": "SG161222/RealVisXL_V5.0_Lightning", | |
"Lustify Lightning": "GraydientPlatformAPI/lustify-lightning", | |
"Juggernaut XL Lightning": "RunDiffusion/Juggernaut-XL-Lightning", | |
"Juggernaut-XL-V9-GE-RDPhoto2": "AiWise/Juggernaut-XL-V9-GE-RDPhoto2-Lightning_4S", | |
"SatPony-Lightning": "John6666/satpony-lightning-v2-sdxl" | |
} | |
config_file = hf_hub_download( | |
"xinsir/controlnet-union-sdxl-1.0", | |
filename="config_promax.json", | |
) | |
config = ControlNetModel_Union.load_config(config_file) | |
controlnet_model = ControlNetModel_Union.from_config(config) | |
model_file = hf_hub_download( | |
"xinsir/controlnet-union-sdxl-1.0", | |
filename="diffusion_pytorch_model_promax.safetensors", | |
) | |
state_dict = load_state_dict(model_file) | |
model, _, _, _, _ = ControlNetModel_Union._load_pretrained_model( | |
controlnet_model, state_dict, model_file, "xinsir/controlnet-union-sdxl-1.0" | |
) | |
model.to(device="cuda", dtype=torch.float16) | |
vae = AutoencoderKL.from_pretrained( | |
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16 | |
).to("cuda") | |
pipe = StableDiffusionXLFillPipeline.from_pretrained( | |
"SG161222/RealVisXL_V5.0_Lightning", | |
torch_dtype=torch.float16, | |
vae=vae, | |
controlnet=model, | |
variant="fp16", | |
) | |
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config) | |
pipe.to("cuda") | |
print(pipe) | |
def load_default_pipeline(): | |
global pipe | |
pipe = StableDiffusionXLFillPipeline.from_pretrained( | |
"SG161222/RealVisXL_V5.0_Lightning", | |
torch_dtype=torch.float16, | |
vae=vae, | |
controlnet=model, | |
).to("cuda") | |
return gr.update(value="Default pipeline loaded!") | |
# @spaces.GPU() | |
# def predict_masks(prompts): | |
# DEVICE = torch.device("cuda") | |
# SAM_MODEL = "facebook/sam2.1-hiera-large" | |
# # if PREDICTOR is None: | |
# # PREDICTOR = SAM2ImagePredictor.from_pretrained(SAM_MODEL, device=DEVICE) | |
# # else: | |
# # PREDICTOR = PREDICTOR | |
# PREDICTOR = SAM2ImagePredictor.from_pretrained(SAM_MODEL, device=DEVICE) | |
# """Predict a single mask from the image based on selected points.""" | |
# image = np.array(prompts["image"]) # Convert the image to a numpy array | |
# points = prompts["points"] # Get the points from prompts | |
# if not points: | |
# return image # Return the original image if no points are selected | |
# # Debugging: Print the structure of points | |
# print(f"Points structure: {points}") | |
# # Ensure points is a list of lists with at least two elements | |
# if isinstance(points, list) and all(isinstance(point, list) and len(point) >= 2 for point in points): | |
# input_points = [[point[0], point[1]] for point in points] | |
# else: | |
# return image # Return the original image if points structure is unexpected | |
# input_labels = [1] * len(input_points) | |
# with torch.inference_mode(): | |
# PREDICTOR.set_image(image) | |
# masks, _, _ = PREDICTOR.predict( | |
# point_coords=input_points, point_labels=input_labels, multimask_output=False | |
# ) | |
# # Prepare the overlay image | |
# red_mask = np.zeros_like(image) | |
# if masks and len(masks) > 0: | |
# red_mask[:, :, 0] = masks[0].astype(np.uint8) * 255 # Apply the red channel | |
# red_mask = PILImage.fromarray(red_mask) | |
# original_image = PILImage.fromarray(image) | |
# blended_image = PILImage.blend(original_image, red_mask, alpha=0.5) | |
# return np.array(blended_image) | |
# else: | |
# return image | |
# def update_mask(prompts): | |
# """Update the mask based on the prompts.""" | |
# image = prompts["image"] | |
# points = prompts["points"] | |
# return predict_masks(image, points) | |
def fill_image(prompt, image, model_selection, paste_back): | |
print(f"Received image: {image}") | |
if image is None: | |
yield None, None | |
return | |
( | |
prompt_embeds, | |
negative_prompt_embeds, | |
pooled_prompt_embeds, | |
negative_pooled_prompt_embeds, | |
) = pipe.encode_prompt(prompt, "cuda", True) | |
source = image["background"] | |
mask = image["layers"][0] | |
alpha_channel = mask.split()[3] | |
binary_mask = alpha_channel.point(lambda p: p > 0 and 255) | |
cnet_image = source.copy() | |
cnet_image.paste(0, (0, 0), binary_mask) | |
for image in pipe( | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
pooled_prompt_embeds=pooled_prompt_embeds, | |
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
image=cnet_image, | |
): | |
yield image, cnet_image | |
print(f"{model_selection=}") | |
print(f"{paste_back=}") | |
if paste_back: | |
image = image.convert("RGBA") | |
cnet_image.paste(image, (0, 0), binary_mask) | |
else: | |
cnet_image = image | |
yield source, cnet_image | |
def clear_result(): | |
return gr.update(value=None) | |
def can_expand(source_width, source_height, target_width, target_height, alignment): | |
if alignment in ("Left", "Right") and source_width >= target_width: | |
return False | |
if alignment in ("Top", "Bottom") and source_height >= target_height: | |
return False | |
return True | |
def prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom): | |
target_size = (width, height) | |
scale_factor = min(target_size[0] / image.width, target_size[1] / image.height) | |
new_width = int(image.width * scale_factor) | |
new_height = int(image.height * scale_factor) | |
source = image.resize((new_width, new_height), Image.LANCZOS) | |
if resize_option == "Full": | |
resize_percentage = 100 | |
elif resize_option == "80%": | |
resize_percentage = 80 | |
elif resize_option == "67%": | |
resize_percentage = 67 | |
elif resize_option == "50%": | |
resize_percentage = 50 | |
elif resize_option == "33%": | |
resize_percentage = 33 | |
elif resize_option == "25%": | |
resize_percentage = 25 | |
else: # Custom | |
resize_percentage = custom_resize_percentage | |
resize_factor = resize_percentage / 100 | |
new_width = int(source.width * resize_factor) | |
new_height = int(source.height * resize_factor) | |
new_width = max(new_width, 64) | |
new_height = max(new_height, 64) | |
source = source.resize((new_width, new_height), Image.LANCZOS) | |
overlap_x = int(new_width * (overlap_percentage / 100)) | |
overlap_y = int(new_height * (overlap_percentage / 100)) | |
overlap_x = max(overlap_x, 1) | |
overlap_y = max(overlap_y, 1) | |
if alignment == "Middle": | |
margin_x = (target_size[0] - new_width) // 2 | |
margin_y = (target_size[1] - new_height) // 2 | |
elif alignment == "Left": | |
margin_x = 0 | |
margin_y = (target_size[1] - new_height) // 2 | |
elif alignment == "Right": | |
margin_x = target_size[0] - new_width | |
margin_y = (target_size[1] - new_height) // 2 | |
elif alignment == "Top": | |
margin_x = (target_size[0] - new_width) // 2 | |
margin_y = 0 | |
elif alignment == "Bottom": | |
margin_x = (target_size[0] - new_width) // 2 | |
margin_y = target_size[1] - new_height | |
margin_x = max(0, min(margin_x, target_size[0] - new_width)) | |
margin_y = max(0, min(margin_y, target_size[1] - new_height)) | |
background = Image.new('RGB', target_size, (255, 255, 255)) | |
background.paste(source, (margin_x, margin_y)) | |
mask = Image.new('L', target_size, 255) | |
mask_draw = ImageDraw.Draw(mask) | |
white_gaps_patch = 2 | |
left_overlap = margin_x + overlap_x if overlap_left else margin_x + white_gaps_patch | |
right_overlap = margin_x + new_width - overlap_x if overlap_right else margin_x + new_width - white_gaps_patch | |
top_overlap = margin_y + overlap_y if overlap_top else margin_y + white_gaps_patch | |
bottom_overlap = margin_y + new_height - overlap_y if overlap_bottom else margin_y + new_height - white_gaps_patch | |
if alignment == "Left": | |
left_overlap = margin_x + overlap_x if overlap_left else margin_x | |
elif alignment == "Right": | |
right_overlap = margin_x + new_width - overlap_x if overlap_right else margin_x + new_width | |
elif alignment == "Top": | |
top_overlap = margin_y + overlap_y if overlap_top else margin_y | |
elif alignment == "Bottom": | |
botttom_overlap = margin = margin = margin = margin_y + new_height - overlap_y if overlap_bottom else margin_y + new_height | |
mask_draw.rectangle([ | |
(left_overlap, top_overlap), | |
(right_overlap, bottom_overlap) | |
], fill=0) | |
return background, mask | |
def preview_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom): | |
background, mask = prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom) | |
preview = background.copy().convert('RGBA') | |
red_overlay = Image.new('RGBA', background.size, (255, 0, 0, 64)) | |
red_mask = Image.new('RGBA', background.size, (0, 0, 0, 0)) | |
red_mask.paste(red_overlay, (0, 0), mask) | |
preview = Image.alpha_composite(preview, red_mask) | |
return preview | |
def inpaint(prompt, image, inpaint_model, paste_back): | |
global pipe | |
if pipe.config.model_name != MODELS[model_name]: | |
pipe = StableDiffusionXLFillPipeline.from_pretrained( | |
MODELS[model_name], | |
torch_dtype=torch.float16, | |
vae=vae, | |
controlnet=model, | |
).to("cuda") | |
print(f"Loaded new SDXL model: {pipe.config.model_name}") | |
mask = Image.fromarray(image["mask"]).convert("L") | |
image = Image.fromarray(image["image"]) | |
inpaint_final_prompt = f"score_9, score_8_up, score_7_up, {prompt}" | |
result = pipe(prompt=inpaint_final_prompt, image=image, mask_image=mask).images[0] | |
if paste_back: | |
result.paste(image, (0, 0), Image.fromarray(255 - np.array(mask))) | |
return result | |
def outpaint(image, width, height, overlap_percentage, num_inference_steps, resize_option, custom_resize_percentage, prompt_input, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom): | |
background, mask = prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom) | |
if not can_expand(background.width, background.height, width, height, alignment): | |
alignment = "Middle" | |
cnet_image = background.copy() | |
cnet_image.paste(0, (0, 0), mask) | |
final_prompt = f"score_9, score_8_up, score_7_up, {prompt_input} , high quality, 4k" | |
print(f"Outpainting using SDXL model: {pipe.config.model_name}") | |
( | |
prompt_embeds, | |
negative_prompt_embeds, | |
pooled_prompt_embeds, | |
negative_pooled_prompt_embeds, | |
) = pipe.encode_prompt(final_prompt, "cuda", True) | |
for image in pipe( | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
pooled_prompt_embeds=pooled_prompt_embeds, | |
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
image=cnet_image, | |
num_inference_steps=num_inference_steps | |
): | |
yield cnet_image, image | |
image = image.convert("RGBA") | |
cnet_image.paste(image, (0, 0), mask) | |
yield background, cnet_image | |
def infer(image, width, height, overlap_percentage, num_inference_steps, resize_option, custom_resize_percentage, prompt_input, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom): | |
background, mask = prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom) | |
if not can_expand(background.width, background.height, width, height, alignment): | |
alignment = "Middle" | |
cnet_image = background.copy() | |
cnet_image.paste(0, (0, 0), mask) | |
final_prompt = f"{prompt_input} , high quality, 4k" | |
( | |
prompt_embeds, | |
negative_prompt_embeds, | |
pooled_prompt_embeds, | |
negative_pooled_prompt_embeds, | |
) = pipe.encode_prompt(final_prompt, "cuda", True) | |
for image in pipe( | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
pooled_prompt_embeds=pooled_prompt_embeds, | |
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
image=cnet_image, | |
num_inference_steps=num_inference_steps | |
): | |
yield cnet_image, image | |
image = image.convert("RGBA") | |
cnet_image.paste(image, (0, 0), mask) | |
yield background, cnet_image | |
def use_output_as_input(output_image): | |
return gr.update(value=output_image[1]) | |
def preload_presets(target_ratio, ui_width, ui_height): | |
if target_ratio == "9:16": | |
changed_width = 720 | |
changed_height = 1280 | |
return changed_width, changed_height, gr.update() | |
elif target_ratio == "2:3": | |
changed_width = 1024 | |
changed_height = 1536 | |
return changed_width, changed_height, gr.update() | |
elif target_ratio == "16:9": | |
changed_width = 1280 | |
changed_height = 720 | |
return changed_width, changed_height, gr.update() | |
elif target_ratio == "1:1": | |
changed_width = 1024 | |
changed_height = 1024 | |
return changed_width, changed_height, gr.update() | |
elif target_ratio == "Custom": | |
return ui_width, ui_height, gr.update(open=True) | |
else: | |
return ui_width, ui_height, gr.update() | |
def select_the_right_preset(user_width, user_height): | |
if user_width == 720 and user_height == 1280: | |
return "9:16" | |
elif user_width == 1024 and user_height == 1536: | |
return "2:3" | |
elif user_width == 1280 and user_height == 720: | |
return "16:9" | |
elif user_width == 1024 and user_height == 1024: | |
return "1:1" | |
else: | |
return "Custom" | |
def toggle_custom_resize_slider(resize_option): | |
return gr.update(visible=(resize_option == "Custom")) | |
def update_history(new_image, history): | |
if history is None: | |
history = [] | |
history.insert(0, new_image) | |
return history | |
def clear_cache(): | |
global pipe | |
pipe = None | |
torch.cuda.empty_cache() | |
return gr.update(value="Cache cleared!") | |
css = """ | |
.nulgradio-container { | |
width: 86vw !important; | |
} | |
.nulcontain { | |
overflow-y: scroll !important; | |
padding: 10px 40px !important; | |
} | |
div#component-17 { | |
height: auto !important; | |
} | |
div#component-46{ | |
height: 100% !important; | |
} | |
""" | |
title = """<h1 align="center">Diffusers Image Outpaint</h1> | |
<div align="center">Drop an image you would like to extend, pick your expected ratio and hit Generate.</div> | |
<div style="display: flex; justify-content: center; align-items: center; text-align: center;"> | |
<p style="display: flex;gap: 6px;"> | |
<a href="https://huggingface.co/spaces/fffiloni/diffusers-image-outpout?duplicate=true"> | |
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-md.svg" alt="Duplicate this Space"> | |
</a> to skip the queue and enjoy faster inference on the GPU of your choice | |
</p> | |
</div> | |
""" | |
sam_block = gr.load(name="spaces/LPX55/SAM2_1-Image-Predictor-Masking-Tool-CPU") | |
with gr.Blocks(css=css, fill_height=True) as demo: | |
gr.Markdown("# Diffusers Inpaint and Outpaint") | |
with gr.Tabs(): | |
with gr.TabItem("Inpaint"): | |
with gr.Column(): | |
with gr.Row(): | |
with gr.Column(): | |
prompt = gr.Textbox( | |
label="Prompt", | |
info="Describe what to inpaint the mask with", | |
lines=3, | |
) | |
with gr.Column(): | |
model_selection = gr.Dropdown( | |
choices=list(MODELS.keys()), | |
value="RealVisXL V5.0 Lightning", | |
label="Model", | |
) | |
with gr.Row(): | |
run_button = gr.Button("Generate") | |
paste_back = gr.Checkbox(True, label="Paste back original") | |
sam_block() | |
with gr.Row(equal_height=False): | |
input_image = gr.ImageMask( | |
type="pil", label="Input Image", layers=True | |
) | |
result = ImageSlider( | |
interactive=False, | |
label="Generated Image", | |
) | |
use_as_input_button = gr.Button("Use as Input Image", visible=False) | |
use_as_input_button.click( | |
fn=use_output_as_input, inputs=[result], outputs=[input_image] | |
) | |
run_button.click( | |
fn=clear_result, | |
inputs=None, | |
outputs=result, | |
).then( | |
fn=lambda: gr.update(visible=False), | |
inputs=None, | |
outputs=use_as_input_button, | |
).then( | |
fn=fill_image, | |
inputs=[prompt, input_image, model_selection, paste_back], | |
outputs=[result], | |
).then( | |
fn=lambda: gr.update(visible=True), | |
inputs=None, | |
outputs=use_as_input_button, | |
) | |
prompt.submit( | |
fn=clear_result, | |
inputs=None, | |
outputs=result, | |
).then( | |
fn=lambda: gr.update(visible=False), | |
inputs=None, | |
outputs=use_as_input_button, | |
).then( | |
fn=fill_image, | |
inputs=[prompt, input_image, model_selection, paste_back], | |
outputs=[result], | |
).then( | |
fn=lambda: gr.update(visible=True), | |
inputs=None, | |
outputs=use_as_input_button, | |
) | |
with gr.TabItem("Outpaint"): | |
with gr.Column(): | |
with gr.Row(): | |
with gr.Column(): | |
input_image_outpaint = gr.Image( | |
type="pil", | |
label="Input Image" | |
) | |
with gr.Row(): | |
prompt_input = gr.Textbox(label="Prompt (Optional)") | |
with gr.Row(): | |
target_ratio = gr.Radio( | |
label="Expected Ratio", | |
choices=["9:16", "16:9", "1:1", "Custom"], | |
value="1:1", | |
scale=2 | |
) | |
alignment_dropdown = gr.Dropdown( | |
choices=["Middle", "Left", "Right", "Top", "Bottom"], | |
value="Middle", | |
label="Alignment" | |
) | |
with gr.Accordion(label="Advanced settings", open=False) as settings_panel: | |
with gr.Column(): | |
with gr.Row(): | |
width_slider = gr.Slider( | |
label="Target Width", | |
minimum=720, | |
maximum=1536, | |
step=8, | |
value=1280, | |
) | |
height_slider = gr.Slider( | |
label="Target Height", | |
minimum=720, | |
maximum=1536, | |
step=8, | |
value=1280, | |
) | |
num_inference_steps = gr.Slider(label="Steps", minimum=4, maximum=12, step=1, value=8) | |
with gr.Group(): | |
overlap_percentage = gr.Slider( | |
label="Mask overlap (%)", | |
minimum=1, | |
maximum=50, | |
value=10, | |
step=1 | |
) | |
with gr.Row(): | |
overlap_top = gr.Checkbox(label="Overlap Top", value=True) | |
overlap_right = gr.Checkbox(label="Overlap Right", value=True) | |
with gr.Row(): | |
overlap_left = gr.Checkbox(label="Overlap Left", value=True) | |
overlap_bottom = gr.Checkbox(label="Overlap Bottom", value=True) | |
with gr.Row(): | |
resize_option = gr.Radio( | |
label="Resize input image", | |
choices=["Full", "80%", "50%", "33%", "25%", "Custom"], | |
value="Full" | |
) | |
custom_resize_percentage = gr.Slider( | |
label="Custom resize (%)", | |
minimum=1, | |
maximum=100, | |
step=1, | |
value=50, | |
visible=False | |
) | |
with gr.Row(): | |
preview_button = gr.Button("Preview Alignment") | |
runout_button = gr.Button("Generate") | |
with gr.Column(): | |
result_outpaint = ImageSlider( | |
interactive=False, | |
label="Generated Image", | |
) | |
use_as_input_button_outpaint = gr.Button("Use as Input Image", visible=False) | |
history_gallery = gr.Gallery(label="History", columns=6, object_fit="contain", interactive=False) | |
preview_image = gr.Image(label="Preview") | |
# with gr.TabItem("SAM2 Masking"): | |
# input_image, points_map, output_result_mask = create_sam2_tab() | |
# with gr.TabItem("SAM2 Mask"): | |
# gr.Markdown("# Object Segmentation with SAM2") | |
# gr.Markdown( | |
# """ | |
# This application utilizes **Segment Anything V2 (SAM2)** to allow you to upload an image and interactively generate a segmentation mask based on multiple points you select on the image. | |
# """ | |
# ) | |
# with gr.Row(): | |
# with gr.Column(): | |
# image_input = gr.State() | |
# # Input: ImagePrompter for uploaded image | |
# upload_image_input = ImagePrompter(show_label=False) | |
# with gr.Column(): | |
# image_output = gr.Image(label="Segmented Image", type="pil", height=400) | |
# with gr.Row(): | |
# # Button to trigger the prediction | |
# predict_button = gr.Button("Predict Mask") | |
# # Define the action triggered by the predict button | |
# predict_button.click( | |
# fn=predict_masks, | |
# inputs=[upload_image_input], | |
# outputs=[image_output], | |
# show_progress=True, | |
# ) | |
with gr.TabItem("SAM2.1 Segmented Mask"): | |
with gr.Blocks() as sam_demo: | |
sam2_mask.demo.render() | |
# Define the action triggered by the upload_image_input change | |
# upload_image_input.change( | |
# fn=update_mask, | |
# inputs=[upload_image_input], | |
# outputs=[image_output], | |
# show_progress=True, | |
# ) | |
with gr.TabItem("Misc"): | |
with gr.Column(): | |
clear_cache_button = gr.Button("Clear CUDA Cache") | |
clear_cache_message = gr.Markdown("") | |
clear_cache_button.click( | |
fn=clear_cache, | |
inputs=None, | |
outputs=clear_cache_message, | |
) | |
load_default_button = gr.Button("Load Default Pipeline") | |
load_default_message = gr.Markdown("") | |
load_default_button.click( | |
fn=load_default_pipeline, | |
inputs=None, | |
outputs=load_default_message, | |
) | |
# upload_image_input.change( | |
# fn=lambda img: img, inputs=upload_image_input, outputs=image_input | |
# ) | |
target_ratio.change( | |
fn=preload_presets, | |
inputs=[target_ratio, width_slider, height_slider], | |
outputs=[width_slider, height_slider, settings_panel], | |
queue=False | |
) | |
width_slider.change( | |
fn=select_the_right_preset, | |
inputs=[width_slider, height_slider], | |
outputs=[target_ratio], | |
queue=False | |
) | |
height_slider.change( | |
fn=select_the_right_preset, | |
inputs=[width_slider, height_slider], | |
outputs=[target_ratio], | |
queue=False | |
) | |
resize_option.change( | |
fn=toggle_custom_resize_slider, | |
inputs=[resize_option], | |
outputs=[custom_resize_percentage], | |
queue=False | |
) | |
use_as_input_button_outpaint.click( | |
fn=use_output_as_input, | |
inputs=[result_outpaint], | |
outputs=[input_image_outpaint] | |
) | |
runout_button.click( | |
fn=clear_result, | |
inputs=None, | |
outputs=result_outpaint, | |
).then( | |
fn=infer, | |
inputs=[input_image_outpaint, width_slider, height_slider, overlap_percentage, num_inference_steps, | |
resize_option, custom_resize_percentage, prompt_input, alignment_dropdown, | |
overlap_left, overlap_right, overlap_top, overlap_bottom], | |
outputs=[result_outpaint], | |
).then( | |
fn=lambda x, history: update_history(x[1], history), | |
inputs=[result_outpaint, history_gallery], | |
outputs=history_gallery, | |
).then( | |
fn=lambda: gr.update(visible=True), | |
inputs=None, | |
outputs=[use_as_input_button_outpaint], | |
) | |
prompt_input.submit( | |
fn=clear_result, | |
inputs=None, | |
outputs=result_outpaint, | |
).then( | |
fn=infer, | |
inputs=[input_image_outpaint, width_slider, height_slider, overlap_percentage, num_inference_steps, | |
resize_option, custom_resize_percentage, prompt_input, alignment_dropdown, | |
overlap_left, overlap_right, overlap_top, overlap_bottom], | |
outputs=[result_outpaint], | |
).then( | |
fn=lambda x, history: update_history(x[1], history), | |
inputs=[result_outpaint, history_gallery], | |
outputs=history_gallery, | |
).then( | |
fn=lambda: gr.update(visible=True), | |
inputs=None, | |
outputs=[use_as_input_button_outpaint], | |
) | |
preview_button.click( | |
fn=preview_image_and_mask, | |
inputs=[input_image_outpaint, width_slider, height_slider, overlap_percentage, resize_option, custom_resize_percentage, alignment_dropdown, | |
overlap_left, overlap_right, overlap_top, overlap_bottom], | |
outputs=[preview_image], | |
queue=False | |
) | |
demo.launch(show_error=True) |