LPX55 commited on
Commit
10752e5
·
verified ·
1 Parent(s): c56644d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -117
app.py CHANGED
@@ -7,32 +7,8 @@ from gradio_imageslider import ImageSlider
7
  from huggingface_hub import hf_hub_download
8
  from controlnet_union import ControlNetModel_Union
9
  from pipeline_fill_sd_xl import StableDiffusionXLFillPipeline
10
- from gradio_image_prompter import ImagePrompter
11
  from PIL import Image, ImageDraw
12
  import numpy as np
13
- # from sam2.sam2_image_predictor import SAM2ImagePredictor
14
- # from sam2_mask import create_sam2_tab
15
- import subprocess
16
- import os
17
-
18
- subprocess.run("rm -rf /data-nvme/zerogpu-offload/*", env={}, shell=True)
19
- HF_TOKEN = os.environ["HF_TOKEN"]
20
-
21
- # class SAM2PredictorSingleton:
22
- # _instance = None
23
-
24
- # def __new__(cls):
25
- # if cls._instance is None:
26
- # cls._instance = super(SAM2PredictorSingleton, cls).__new__(cls)
27
- # cls._instance._initialize_predictor()
28
- # return cls._instance
29
-
30
- # def _initialize_predictor(self):
31
- # MODEL = "facebook/sam2-hiera-large"
32
- # DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
33
- # self.predictor = SAM2ImagePredictor.from_pretrained(MODEL, device=DEVICE)
34
-
35
- PREDICTOR = None
36
 
37
  MODELS = {
38
  "RealVisXL V5.0 Lightning": "SG161222/RealVisXL_V5.0_Lightning",
@@ -81,59 +57,6 @@ def load_default_pipeline():
81
  ).to("cuda")
82
  return gr.update(value="Default pipeline loaded!")
83
 
84
- # @spaces.GPU()
85
- # def predict_masks(prompts):
86
-
87
- # DEVICE = torch.device("cuda")
88
- # SAM_MODEL = "facebook/sam2.1-hiera-large"
89
- # # if PREDICTOR is None:
90
- # # PREDICTOR = SAM2ImagePredictor.from_pretrained(SAM_MODEL, device=DEVICE)
91
- # # else:
92
- # # PREDICTOR = PREDICTOR
93
- # PREDICTOR = SAM2ImagePredictor.from_pretrained(SAM_MODEL, device=DEVICE)
94
-
95
- # """Predict a single mask from the image based on selected points."""
96
- # image = np.array(prompts["image"]) # Convert the image to a numpy array
97
- # points = prompts["points"] # Get the points from prompts
98
-
99
- # if not points:
100
- # return image # Return the original image if no points are selected
101
-
102
- # # Debugging: Print the structure of points
103
- # print(f"Points structure: {points}")
104
-
105
- # # Ensure points is a list of lists with at least two elements
106
- # if isinstance(points, list) and all(isinstance(point, list) and len(point) >= 2 for point in points):
107
- # input_points = [[point[0], point[1]] for point in points]
108
- # else:
109
- # return image # Return the original image if points structure is unexpected
110
-
111
- # input_labels = [1] * len(input_points)
112
-
113
- # with torch.inference_mode():
114
- # PREDICTOR.set_image(image)
115
- # masks, _, _ = PREDICTOR.predict(
116
- # point_coords=input_points, point_labels=input_labels, multimask_output=False
117
- # )
118
-
119
- # # Prepare the overlay image
120
- # red_mask = np.zeros_like(image)
121
- # if masks and len(masks) > 0:
122
- # red_mask[:, :, 0] = masks[0].astype(np.uint8) * 255 # Apply the red channel
123
- # red_mask = PILImage.fromarray(red_mask)
124
- # original_image = PILImage.fromarray(image)
125
- # blended_image = PILImage.blend(original_image, red_mask, alpha=0.5)
126
- # return np.array(blended_image)
127
- # else:
128
- # return image
129
-
130
- # def update_mask(prompts):
131
- # """Update the mask based on the prompts."""
132
- # image = prompts["image"]
133
- # points = prompts["points"]
134
- # return predict_masks(image, points)
135
-
136
-
137
  @spaces.GPU(duration=12)
138
  def fill_image(prompt, image, model_selection, paste_back):
139
  print(f"Received image: {image}")
@@ -193,8 +116,6 @@ def prepare_image_and_mask(image, width, height, overlap_percentage, resize_opti
193
  resize_percentage = 100
194
  elif resize_option == "80%":
195
  resize_percentage = 80
196
- elif resize_option == "67%":
197
- resize_percentage = 67
198
  elif resize_option == "50%":
199
  resize_percentage = 50
200
  elif resize_option == "33%":
@@ -387,7 +308,6 @@ def clear_cache():
387
  torch.cuda.empty_cache()
388
  return gr.update(value="Cache cleared!")
389
 
390
-
391
  css = """
392
  .nulgradio-container {
393
  width: 86vw !important;
@@ -399,9 +319,6 @@ css = """
399
  div#component-17 {
400
  height: auto !important;
401
  }
402
- div#component-46{
403
- height: 100% !important;
404
- }
405
  """
406
 
407
  title = """<h1 align="center">Diffusers Image Outpaint</h1>
@@ -414,7 +331,6 @@ title = """<h1 align="center">Diffusers Image Outpaint</h1>
414
  </p>
415
  </div>
416
  """
417
- sam_block = gr.load(name="spaces/LPX55/SAM2_1-Image-Predictor-Masking-Tool-CPU")
418
 
419
  with gr.Blocks(css=css, fill_height=True) as demo:
420
  gr.Markdown("# Diffusers Inpaint and Outpaint")
@@ -556,6 +472,15 @@ with gr.Blocks(css=css, fill_height=True) as demo:
556
  )
557
  with gr.Column():
558
  preview_button = gr.Button("Preview alignment and mask")
 
 
 
 
 
 
 
 
 
559
  with gr.Column():
560
  result_outpaint = ImageSlider(
561
  interactive=False,
@@ -564,34 +489,6 @@ with gr.Blocks(css=css, fill_height=True) as demo:
564
  use_as_input_button_outpaint = gr.Button("Use as Input Image", visible=False)
565
  history_gallery = gr.Gallery(label="History", columns=6, object_fit="contain", interactive=False)
566
  preview_image = gr.Image(label="Preview")
567
- # with gr.TabItem("SAM2 Masking"):
568
- # input_image, points_map, output_result_mask = create_sam2_tab()
569
- # with gr.TabItem("SAM2 Mask"):
570
- # gr.Markdown("# Object Segmentation with SAM2")
571
- # gr.Markdown(
572
- # """
573
- # This application utilizes **Segment Anything V2 (SAM2)** to allow you to upload an image and interactively generate a segmentation mask based on multiple points you select on the image.
574
- # """
575
- # )
576
- # with gr.Row():
577
- # with gr.Column():
578
- # image_input = gr.State()
579
- # # Input: ImagePrompter for uploaded image
580
- # upload_image_input = ImagePrompter(show_label=False)
581
- # with gr.Column():
582
- # image_output = gr.Image(label="Segmented Image", type="pil", height=400)
583
- # with gr.Row():
584
- # # Button to trigger the prediction
585
- # predict_button = gr.Button("Predict Mask")
586
-
587
- # # Define the action triggered by the predict button
588
- # predict_button.click(
589
- # fn=predict_masks,
590
- # inputs=[upload_image_input],
591
- # outputs=[image_output],
592
- # show_progress=True,
593
- # )
594
-
595
  with gr.TabItem("Misc"):
596
  with gr.Column():
597
  clear_cache_button = gr.Button("Clear CUDA Cache")
@@ -608,11 +505,6 @@ with gr.Blocks(css=css, fill_height=True) as demo:
608
  inputs=None,
609
  outputs=load_default_message,
610
  )
611
-
612
- # upload_image_input.change(
613
- # fn=lambda img: img, inputs=upload_image_input, outputs=image_input
614
- # )
615
-
616
  target_ratio.change(
617
  fn=preload_presets,
618
  inputs=[target_ratio, width_slider, height_slider],
 
7
  from huggingface_hub import hf_hub_download
8
  from controlnet_union import ControlNetModel_Union
9
  from pipeline_fill_sd_xl import StableDiffusionXLFillPipeline
 
10
  from PIL import Image, ImageDraw
11
  import numpy as np
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
 
13
  MODELS = {
14
  "RealVisXL V5.0 Lightning": "SG161222/RealVisXL_V5.0_Lightning",
 
57
  ).to("cuda")
58
  return gr.update(value="Default pipeline loaded!")
59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60
  @spaces.GPU(duration=12)
61
  def fill_image(prompt, image, model_selection, paste_back):
62
  print(f"Received image: {image}")
 
116
  resize_percentage = 100
117
  elif resize_option == "80%":
118
  resize_percentage = 80
 
 
119
  elif resize_option == "50%":
120
  resize_percentage = 50
121
  elif resize_option == "33%":
 
308
  torch.cuda.empty_cache()
309
  return gr.update(value="Cache cleared!")
310
 
 
311
  css = """
312
  .nulgradio-container {
313
  width: 86vw !important;
 
319
  div#component-17 {
320
  height: auto !important;
321
  }
 
 
 
322
  """
323
 
324
  title = """<h1 align="center">Diffusers Image Outpaint</h1>
 
331
  </p>
332
  </div>
333
  """
 
334
 
335
  with gr.Blocks(css=css, fill_height=True) as demo:
336
  gr.Markdown("# Diffusers Inpaint and Outpaint")
 
472
  )
473
  with gr.Column():
474
  preview_button = gr.Button("Preview alignment and mask")
475
+ gr.Examples(
476
+ examples=[
477
+ ["./examples/example_1.webp", 1280, 720, "Middle"],
478
+ ["./examples/example_2.jpg", 1440, 810, "Left"],
479
+ ["./examples/example_3.jpg", 1024, 1024, "Top"],
480
+ ["./examples/example_3.jpg", 1024, 1024, "Bottom"],
481
+ ],
482
+ inputs=[input_image_outpaint, width_slider, height_slider, alignment_dropdown],
483
+ )
484
  with gr.Column():
485
  result_outpaint = ImageSlider(
486
  interactive=False,
 
489
  use_as_input_button_outpaint = gr.Button("Use as Input Image", visible=False)
490
  history_gallery = gr.Gallery(label="History", columns=6, object_fit="contain", interactive=False)
491
  preview_image = gr.Image(label="Preview")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
492
  with gr.TabItem("Misc"):
493
  with gr.Column():
494
  clear_cache_button = gr.Button("Clear CUDA Cache")
 
505
  inputs=None,
506
  outputs=load_default_message,
507
  )
 
 
 
 
 
508
  target_ratio.change(
509
  fn=preload_presets,
510
  inputs=[target_ratio, width_slider, height_slider],