Spaces:
Running
on
Zero
Running
on
Zero
mem split fix
Browse files- requirements.txt +1 -1
- sam2_mask.py +4 -2
requirements.txt
CHANGED
@@ -12,5 +12,5 @@ safetensors
|
|
12 |
matplotlib
|
13 |
torchvision
|
14 |
pydantic==2.10.6
|
15 |
-
|
16 |
gradio_image_prompter
|
|
|
12 |
matplotlib
|
13 |
torchvision
|
14 |
pydantic==2.10.6
|
15 |
+
sam2
|
16 |
gradio_image_prompter
|
sam2_mask.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
# K-I-S-S
|
2 |
-
|
3 |
import gradio as gr
|
4 |
from gradio_image_prompter import ImagePrompter
|
5 |
from sam2.sam2_image_predictor import SAM2ImagePredictor
|
@@ -10,10 +10,12 @@ from PIL import Image as PILImage
|
|
10 |
# Initialize SAM2 predictor
|
11 |
MODEL = "facebook/sam2.1-hiera-large"
|
12 |
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
13 |
-
PREDICTOR = SAM2ImagePredictor.from_pretrained(MODEL, device=DEVICE)
|
14 |
|
|
|
15 |
def predict_masks(image, points):
|
16 |
"""Predict a single mask from the image based on selected points."""
|
|
|
|
|
17 |
image_np = np.array(image)
|
18 |
points_list = [[point["x"], point["y"]] for point in points]
|
19 |
input_labels = [1] * len(points_list)
|
|
|
1 |
# K-I-S-S
|
2 |
+
import spaces
|
3 |
import gradio as gr
|
4 |
from gradio_image_prompter import ImagePrompter
|
5 |
from sam2.sam2_image_predictor import SAM2ImagePredictor
|
|
|
10 |
# Initialize SAM2 predictor
|
11 |
MODEL = "facebook/sam2.1-hiera-large"
|
12 |
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
13 |
|
14 |
+
@spaces.GPU()
|
15 |
def predict_masks(image, points):
|
16 |
"""Predict a single mask from the image based on selected points."""
|
17 |
+
global PREDICTOR
|
18 |
+
PREDICTOR = SAM2ImagePredictor.from_pretrained(MODEL, device=DEVICE)
|
19 |
image_np = np.array(image)
|
20 |
points_list = [[point["x"], point["y"]] for point in points]
|
21 |
input_labels = [1] * len(points_list)
|