Spaces:
Running
on
Zero
Running
on
Zero
Update app.py (#3)
Browse files- Update app.py (85ff0541fcb00e1d44afff004d05c4e103e21599)
app.py
CHANGED
@@ -1,14 +1,12 @@
|
|
1 |
-
import gradio as gr
|
2 |
import spaces
|
|
|
3 |
import torch
|
4 |
from diffusers import AutoencoderKL, TCDScheduler
|
5 |
from diffusers.models.model_loading_utils import load_state_dict
|
6 |
from gradio_imageslider import ImageSlider
|
7 |
from huggingface_hub import hf_hub_download
|
8 |
-
|
9 |
from controlnet_union import ControlNetModel_Union
|
10 |
from pipeline_fill_sd_xl import StableDiffusionXLFillPipeline
|
11 |
-
|
12 |
from PIL import Image, ImageDraw
|
13 |
import numpy as np
|
14 |
|
@@ -23,7 +21,6 @@ config_file = hf_hub_download(
|
|
23 |
"xinsir/controlnet-union-sdxl-1.0",
|
24 |
filename="config_promax.json",
|
25 |
)
|
26 |
-
|
27 |
config = ControlNetModel_Union.load_config(config_file)
|
28 |
controlnet_model = ControlNetModel_Union.from_config(config)
|
29 |
model_file = hf_hub_download(
|
@@ -35,11 +32,9 @@ model, _, _, _, _ = ControlNetModel_Union._load_pretrained_model(
|
|
35 |
controlnet_model, state_dict, model_file, "xinsir/controlnet-union-sdxl-1.0"
|
36 |
)
|
37 |
model.to(device="cuda", dtype=torch.float16)
|
38 |
-
|
39 |
vae = AutoencoderKL.from_pretrained(
|
40 |
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16
|
41 |
).to("cuda")
|
42 |
-
|
43 |
pipe = StableDiffusionXLFillPipeline.from_pretrained(
|
44 |
"SG161222/RealVisXL_V5.0_Lightning",
|
45 |
torch_dtype=torch.float16,
|
@@ -47,34 +42,21 @@ pipe = StableDiffusionXLFillPipeline.from_pretrained(
|
|
47 |
controlnet=model,
|
48 |
variant="fp16",
|
49 |
)
|
50 |
-
|
51 |
pipe = StableDiffusionXLFillPipeline.from_pretrained(
|
52 |
"GraydientPlatformAPI/lustify-lightning",
|
53 |
torch_dtype=torch.float16,
|
54 |
vae=vae,
|
55 |
controlnet=model,
|
56 |
)
|
57 |
-
|
58 |
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
|
59 |
-
|
60 |
pipe.to("cuda")
|
61 |
|
62 |
-
# inpaint_model = hf_hub_download(
|
63 |
-
# "andro-flock/LUSTIFY-SDXL-NSFW-checkpoint-v2-0-INPAINTING",
|
64 |
-
# "lustifySDXLNSFW_v20-inpainting.safetensors",
|
65 |
-
# )
|
66 |
-
# pipe_inpaint = StableDiffusionXLFillPipeline.from_single_file(
|
67 |
-
# "https://huggingface.co/andro-flock/LUSTIFY-SDXL-NSFW-checkpoint-v2-0-INPAINTING/raw/main/lustifySDXLNSFW_v20-inpainting.safetensors",
|
68 |
-
# torch_dtype=torch.float16,
|
69 |
-
# vae=vae,
|
70 |
-
# controlnet=model,
|
71 |
-
# use_safetensors=True
|
72 |
-
# )
|
73 |
-
# pipe_inpaint.to("cuda")
|
74 |
-
|
75 |
@spaces.GPU(duration=12)
|
76 |
def fill_image(prompt, image, model_selection, paste_back):
|
77 |
-
print(f"Received image: {image}")
|
|
|
|
|
|
|
78 |
|
79 |
(
|
80 |
prompt_embeds,
|
@@ -82,10 +64,8 @@ def fill_image(prompt, image, model_selection, paste_back):
|
|
82 |
pooled_prompt_embeds,
|
83 |
negative_pooled_prompt_embeds,
|
84 |
) = pipe.encode_prompt(prompt, "cuda", True)
|
85 |
-
|
86 |
source = image["background"]
|
87 |
mask = image["layers"][0]
|
88 |
-
|
89 |
alpha_channel = mask.split()[3]
|
90 |
binary_mask = alpha_channel.point(lambda p: p > 0 and 255)
|
91 |
cnet_image = source.copy()
|
@@ -102,21 +82,17 @@ def fill_image(prompt, image, model_selection, paste_back):
|
|
102 |
|
103 |
print(f"{model_selection=}")
|
104 |
print(f"{paste_back=}")
|
105 |
-
|
106 |
if paste_back:
|
107 |
image = image.convert("RGBA")
|
108 |
cnet_image.paste(image, (0, 0), binary_mask)
|
109 |
else:
|
110 |
cnet_image = image
|
111 |
-
|
112 |
yield source, cnet_image
|
113 |
|
114 |
-
|
115 |
def clear_result():
|
116 |
return gr.update(value=None)
|
117 |
-
|
118 |
def can_expand(source_width, source_height, target_width, target_height, alignment):
|
119 |
-
"""Checks if the image can be expanded based on the alignment."""
|
120 |
if alignment in ("Left", "Right") and source_width >= target_width:
|
121 |
return False
|
122 |
if alignment in ("Top", "Bottom") and source_height >= target_height:
|
@@ -125,16 +101,11 @@ def can_expand(source_width, source_height, target_width, target_height, alignme
|
|
125 |
|
126 |
def prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom):
|
127 |
target_size = (width, height)
|
128 |
-
|
129 |
-
# Calculate the scaling factor to fit the image within the target size
|
130 |
scale_factor = min(target_size[0] / image.width, target_size[1] / image.height)
|
131 |
new_width = int(image.width * scale_factor)
|
132 |
new_height = int(image.height * scale_factor)
|
133 |
-
|
134 |
-
# Resize the source image to fit within target size
|
135 |
-
source = image.resize((new_width, new_height), Image.LANCZOS)
|
136 |
|
137 |
-
|
138 |
if resize_option == "Full":
|
139 |
resize_percentage = 100
|
140 |
elif resize_option == "80%":
|
@@ -148,27 +119,19 @@ def prepare_image_and_mask(image, width, height, overlap_percentage, resize_opti
|
|
148 |
else: # Custom
|
149 |
resize_percentage = custom_resize_percentage
|
150 |
|
151 |
-
# Calculate new dimensions based on percentage
|
152 |
resize_factor = resize_percentage / 100
|
153 |
new_width = int(source.width * resize_factor)
|
154 |
new_height = int(source.height * resize_factor)
|
155 |
-
|
156 |
-
# Ensure minimum size of 64 pixels
|
157 |
new_width = max(new_width, 64)
|
158 |
new_height = max(new_height, 64)
|
159 |
|
160 |
-
# Resize the image
|
161 |
source = source.resize((new_width, new_height), Image.LANCZOS)
|
162 |
|
163 |
-
# Calculate the overlap in pixels based on the percentage
|
164 |
overlap_x = int(new_width * (overlap_percentage / 100))
|
165 |
overlap_y = int(new_height * (overlap_percentage / 100))
|
166 |
-
|
167 |
-
# Ensure minimum overlap of 1 pixel
|
168 |
overlap_x = max(overlap_x, 1)
|
169 |
overlap_y = max(overlap_y, 1)
|
170 |
|
171 |
-
# Calculate margins based on alignment
|
172 |
if alignment == "Middle":
|
173 |
margin_x = (target_size[0] - new_width) // 2
|
174 |
margin_y = (target_size[1] - new_height) // 2
|
@@ -185,26 +148,21 @@ def prepare_image_and_mask(image, width, height, overlap_percentage, resize_opti
|
|
185 |
margin_x = (target_size[0] - new_width) // 2
|
186 |
margin_y = target_size[1] - new_height
|
187 |
|
188 |
-
# Adjust margins to eliminate gaps
|
189 |
margin_x = max(0, min(margin_x, target_size[0] - new_width))
|
190 |
margin_y = max(0, min(margin_y, target_size[1] - new_height))
|
191 |
|
192 |
-
# Create a new background image and paste the resized source image
|
193 |
background = Image.new('RGB', target_size, (255, 255, 255))
|
194 |
background.paste(source, (margin_x, margin_y))
|
195 |
|
196 |
-
# Create the mask
|
197 |
mask = Image.new('L', target_size, 255)
|
198 |
mask_draw = ImageDraw.Draw(mask)
|
199 |
|
200 |
-
# Calculate overlap areas
|
201 |
white_gaps_patch = 2
|
202 |
-
|
203 |
left_overlap = margin_x + overlap_x if overlap_left else margin_x + white_gaps_patch
|
204 |
right_overlap = margin_x + new_width - overlap_x if overlap_right else margin_x + new_width - white_gaps_patch
|
205 |
top_overlap = margin_y + overlap_y if overlap_top else margin_y + white_gaps_patch
|
206 |
bottom_overlap = margin_y + new_height - overlap_y if overlap_bottom else margin_y + new_height - white_gaps_patch
|
207 |
-
|
208 |
if alignment == "Left":
|
209 |
left_overlap = margin_x + overlap_x if overlap_left else margin_x
|
210 |
elif alignment == "Right":
|
@@ -214,34 +172,21 @@ def prepare_image_and_mask(image, width, height, overlap_percentage, resize_opti
|
|
214 |
elif alignment == "Bottom":
|
215 |
bottom_overlap = margin_y + new_height - overlap_y if overlap_bottom else margin_y + new_height
|
216 |
|
217 |
-
|
218 |
-
# Draw the mask
|
219 |
mask_draw.rectangle([
|
220 |
(left_overlap, top_overlap),
|
221 |
(right_overlap, bottom_overlap)
|
222 |
], fill=0)
|
223 |
-
|
224 |
return background, mask
|
225 |
|
226 |
def preview_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom):
|
227 |
background, mask = prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom)
|
228 |
-
|
229 |
-
# Create a preview image showing the mask
|
230 |
preview = background.copy().convert('RGBA')
|
231 |
-
|
232 |
-
# Create a semi-transparent red overlay
|
233 |
-
red_overlay = Image.new('RGBA', background.size, (255, 0, 0, 64)) # Reduced alpha to 64 (25% opacity)
|
234 |
-
|
235 |
-
# Convert black pixels in the mask to semi-transparent red
|
236 |
red_mask = Image.new('RGBA', background.size, (0, 0, 0, 0))
|
237 |
red_mask.paste(red_overlay, (0, 0), mask)
|
238 |
-
|
239 |
-
# Overlay the red mask on the background
|
240 |
preview = Image.alpha_composite(preview, red_mask)
|
241 |
-
|
242 |
return preview
|
243 |
|
244 |
-
|
245 |
@spaces.GPU(duration=12)
|
246 |
def inpaint(prompt, image, inpaint_model, paste_back):
|
247 |
global pipe
|
@@ -252,39 +197,27 @@ def inpaint(prompt, image, inpaint_model, paste_back):
|
|
252 |
vae=vae,
|
253 |
controlnet=model,
|
254 |
).to("cuda")
|
255 |
-
# if pipe.config.model_name == "Lustify Inpaint":
|
256 |
-
|
257 |
-
|
258 |
mask = Image.fromarray(image["mask"]).convert("L")
|
259 |
image = Image.fromarray(image["image"])
|
260 |
-
|
261 |
result = pipe(prompt=prompt, image=image, mask_image=mask).images[0]
|
262 |
-
# result = pipe_inpaint(prompt=prompt, image=image, mask_image=mask).images[0]
|
263 |
-
|
264 |
if paste_back:
|
265 |
result.paste(image, (0, 0), Image.fromarray(255 - np.array(mask)))
|
266 |
-
|
267 |
return result
|
268 |
|
269 |
@spaces.GPU(duration=12)
|
270 |
def outpaint(image, width, height, overlap_percentage, num_inference_steps, resize_option, custom_resize_percentage, prompt_input, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom):
|
271 |
background, mask = prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom)
|
272 |
-
|
273 |
if not can_expand(background.width, background.height, width, height, alignment):
|
274 |
alignment = "Middle"
|
275 |
-
|
276 |
cnet_image = background.copy()
|
277 |
cnet_image.paste(0, (0, 0), mask)
|
278 |
-
|
279 |
final_prompt = f"{prompt_input} , high quality, 4k"
|
280 |
-
|
281 |
(
|
282 |
prompt_embeds,
|
283 |
negative_prompt_embeds,
|
284 |
pooled_prompt_embeds,
|
285 |
negative_pooled_prompt_embeds,
|
286 |
) = pipe.encode_prompt(final_prompt, "cuda", True)
|
287 |
-
|
288 |
for image in pipe(
|
289 |
prompt_embeds=prompt_embeds,
|
290 |
negative_prompt_embeds=negative_prompt_embeds,
|
@@ -294,31 +227,24 @@ def outpaint(image, width, height, overlap_percentage, num_inference_steps, resi
|
|
294 |
num_inference_steps=num_inference_steps
|
295 |
):
|
296 |
yield cnet_image, image
|
297 |
-
|
298 |
image = image.convert("RGBA")
|
299 |
cnet_image.paste(image, (0, 0), mask)
|
300 |
-
|
301 |
yield background, cnet_image
|
302 |
|
303 |
@spaces.GPU(duration=12)
|
304 |
def infer(image, width, height, overlap_percentage, num_inference_steps, resize_option, custom_resize_percentage, prompt_input, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom):
|
305 |
background, mask = prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom)
|
306 |
-
|
307 |
if not can_expand(background.width, background.height, width, height, alignment):
|
308 |
alignment = "Middle"
|
309 |
-
|
310 |
cnet_image = background.copy()
|
311 |
cnet_image.paste(0, (0, 0), mask)
|
312 |
-
|
313 |
final_prompt = f"{prompt_input} , high quality, 4k"
|
314 |
-
|
315 |
(
|
316 |
prompt_embeds,
|
317 |
negative_prompt_embeds,
|
318 |
pooled_prompt_embeds,
|
319 |
negative_pooled_prompt_embeds,
|
320 |
) = pipe.encode_prompt(final_prompt, "cuda", True)
|
321 |
-
|
322 |
for image in pipe(
|
323 |
prompt_embeds=prompt_embeds,
|
324 |
negative_prompt_embeds=negative_prompt_embeds,
|
@@ -328,17 +254,14 @@ def infer(image, width, height, overlap_percentage, num_inference_steps, resize_
|
|
328 |
num_inference_steps=num_inference_steps
|
329 |
):
|
330 |
yield cnet_image, image
|
331 |
-
|
332 |
image = image.convert("RGBA")
|
333 |
cnet_image.paste(image, (0, 0), mask)
|
334 |
-
|
335 |
yield background, cnet_image
|
336 |
-
|
337 |
-
|
338 |
-
return gr.update(value=
|
339 |
|
340 |
def preload_presets(target_ratio, ui_width, ui_height):
|
341 |
-
"""Updates the width and height sliders based on the selected aspect ratio."""
|
342 |
if target_ratio == "9:16":
|
343 |
changed_width = 720
|
344 |
changed_height = 1280
|
@@ -357,6 +280,8 @@ def preload_presets(target_ratio, ui_width, ui_height):
|
|
357 |
return changed_width, changed_height, gr.update()
|
358 |
elif target_ratio == "Custom":
|
359 |
return ui_width, ui_height, gr.update(open=True)
|
|
|
|
|
360 |
|
361 |
def select_the_right_preset(user_width, user_height):
|
362 |
if user_width == 720 and user_height == 1280:
|
@@ -374,7 +299,6 @@ def toggle_custom_resize_slider(resize_option):
|
|
374 |
return gr.update(visible=(resize_option == "Custom"))
|
375 |
|
376 |
def update_history(new_image, history):
|
377 |
-
"""Updates the history gallery with the new image."""
|
378 |
if history is None:
|
379 |
history = []
|
380 |
history.insert(0, new_image)
|
@@ -399,14 +323,13 @@ title = """<h1 align="center">Diffusers Image Outpaint</h1>
|
|
399 |
<p style="display: flex;gap: 6px;">
|
400 |
<a href="https://huggingface.co/spaces/fffiloni/diffusers-image-outpout?duplicate=true">
|
401 |
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-md.svg" alt="Duplicate this Space">
|
402 |
-
</a> to skip the queue and enjoy faster inference on the GPU of your choice
|
403 |
</p>
|
404 |
</div>
|
405 |
"""
|
406 |
|
407 |
with gr.Blocks(css=css, fill_height=True) as demo:
|
408 |
gr.Markdown("# Diffusers Inpaint and Outpaint")
|
409 |
-
|
410 |
with gr.Tabs():
|
411 |
with gr.TabItem("Inpaint"):
|
412 |
with gr.Column():
|
@@ -423,31 +346,21 @@ with gr.Blocks(css=css, fill_height=True) as demo:
|
|
423 |
value="RealVisXL V5.0 Lightning",
|
424 |
label="Model",
|
425 |
)
|
426 |
-
|
427 |
with gr.Row():
|
428 |
run_button = gr.Button("Generate")
|
429 |
paste_back = gr.Checkbox(True, label="Paste back original")
|
430 |
-
|
431 |
with gr.Row(equal_height=False):
|
432 |
input_image = gr.ImageMask(
|
433 |
type="pil", label="Input Image", layers=True
|
434 |
-
# type="pil", label="Input Image", crop_size=(1024, 1024), layers=False
|
435 |
)
|
436 |
-
|
437 |
result = ImageSlider(
|
438 |
interactive=False,
|
439 |
label="Generated Image",
|
440 |
)
|
441 |
-
|
442 |
use_as_input_button = gr.Button("Use as Input Image", visible=False)
|
443 |
-
|
444 |
-
def use_output_as_input(output_image):
|
445 |
-
return gr.update(value=output_image[1])
|
446 |
-
|
447 |
use_as_input_button.click(
|
448 |
fn=use_output_as_input, inputs=[result], outputs=[input_image]
|
449 |
)
|
450 |
-
|
451 |
run_button.click(
|
452 |
fn=clear_result,
|
453 |
inputs=None,
|
@@ -459,13 +372,12 @@ with gr.Blocks(css=css, fill_height=True) as demo:
|
|
459 |
).then(
|
460 |
fn=fill_image,
|
461 |
inputs=[prompt, input_image, model_selection, paste_back],
|
462 |
-
outputs=result,
|
463 |
).then(
|
464 |
fn=lambda: gr.update(visible=True),
|
465 |
inputs=None,
|
466 |
outputs=use_as_input_button,
|
467 |
)
|
468 |
-
|
469 |
prompt.submit(
|
470 |
fn=clear_result,
|
471 |
inputs=None,
|
@@ -477,29 +389,25 @@ with gr.Blocks(css=css, fill_height=True) as demo:
|
|
477 |
).then(
|
478 |
fn=fill_image,
|
479 |
inputs=[prompt, input_image, model_selection, paste_back],
|
480 |
-
outputs=result,
|
481 |
).then(
|
482 |
fn=lambda: gr.update(visible=True),
|
483 |
inputs=None,
|
484 |
outputs=use_as_input_button,
|
485 |
)
|
486 |
-
|
487 |
with gr.TabItem("Outpaint"):
|
488 |
with gr.Column():
|
489 |
-
|
490 |
with gr.Row():
|
491 |
with gr.Column():
|
492 |
-
|
493 |
type="pil",
|
494 |
label="Input Image"
|
495 |
)
|
496 |
-
|
497 |
with gr.Row():
|
498 |
with gr.Column(scale=2):
|
499 |
prompt_input = gr.Textbox(label="Prompt (Optional)")
|
500 |
with gr.Column(scale=1):
|
501 |
runout_button = gr.Button("Generate")
|
502 |
-
|
503 |
with gr.Row():
|
504 |
target_ratio = gr.Radio(
|
505 |
label="Expected Ratio",
|
@@ -507,13 +415,11 @@ with gr.Blocks(css=css, fill_height=True) as demo:
|
|
507 |
value="1:1",
|
508 |
scale=2
|
509 |
)
|
510 |
-
|
511 |
alignment_dropdown = gr.Dropdown(
|
512 |
choices=["Middle", "Left", "Right", "Top", "Bottom"],
|
513 |
value="Middle",
|
514 |
label="Alignment"
|
515 |
)
|
516 |
-
|
517 |
with gr.Accordion(label="Advanced settings", open=False) as settings_panel:
|
518 |
with gr.Column():
|
519 |
with gr.Row():
|
@@ -522,16 +428,15 @@ with gr.Blocks(css=css, fill_height=True) as demo:
|
|
522 |
minimum=720,
|
523 |
maximum=1536,
|
524 |
step=8,
|
525 |
-
value=1280,
|
526 |
)
|
527 |
height_slider = gr.Slider(
|
528 |
label="Target Height",
|
529 |
minimum=720,
|
530 |
maximum=1536,
|
531 |
step=8,
|
532 |
-
value=1280,
|
533 |
)
|
534 |
-
|
535 |
num_inference_steps = gr.Slider(label="Steps", minimum=4, maximum=12, step=1, value=8)
|
536 |
with gr.Group():
|
537 |
overlap_percentage = gr.Slider(
|
@@ -561,11 +466,8 @@ with gr.Blocks(css=css, fill_height=True) as demo:
|
|
561 |
value=50,
|
562 |
visible=False
|
563 |
)
|
564 |
-
|
565 |
with gr.Column():
|
566 |
preview_button = gr.Button("Preview alignment and mask")
|
567 |
-
|
568 |
-
|
569 |
gr.Examples(
|
570 |
examples=[
|
571 |
["./examples/example_1.webp", 1280, 720, "Middle"],
|
@@ -573,136 +475,65 @@ with gr.Blocks(css=css, fill_height=True) as demo:
|
|
573 |
["./examples/example_3.jpg", 1024, 1024, "Top"],
|
574 |
["./examples/example_3.jpg", 1024, 1024, "Bottom"],
|
575 |
],
|
576 |
-
inputs=[
|
577 |
)
|
578 |
-
|
579 |
-
|
580 |
-
|
581 |
with gr.Column():
|
582 |
-
|
583 |
interactive=False,
|
584 |
label="Generated Image",
|
585 |
)
|
586 |
-
|
587 |
-
|
588 |
history_gallery = gr.Gallery(label="History", columns=6, object_fit="contain", interactive=False)
|
589 |
preview_image = gr.Image(label="Preview")
|
590 |
-
|
591 |
-
|
592 |
-
|
593 |
-
def use_output_as_input(output_image):
|
594 |
-
"""Sets the generated output as the new input image."""
|
595 |
-
return gr.update(value=output_image[1])
|
596 |
-
|
597 |
-
use_as_input_button.click(
|
598 |
fn=use_output_as_input,
|
599 |
-
inputs=[
|
600 |
-
outputs=[
|
601 |
-
)
|
602 |
-
|
603 |
-
# Set up event handlers
|
604 |
-
run_button.click(
|
605 |
-
fn=fill_image,
|
606 |
-
inputs=[prompt, input_image, model_selection, paste_back],
|
607 |
-
outputs=result,
|
608 |
-
)
|
609 |
-
|
610 |
-
target_ratio.change(
|
611 |
-
fn=preload_presets,
|
612 |
-
inputs=[target_ratio, width_slider, height_slider],
|
613 |
-
outputs=[width_slider, height_slider, settings_panel],
|
614 |
-
queue=False
|
615 |
-
)
|
616 |
-
|
617 |
-
width_slider.change(
|
618 |
-
fn=select_the_right_preset,
|
619 |
-
inputs=[width_slider, height_slider],
|
620 |
-
outputs=[target_ratio],
|
621 |
-
queue=False
|
622 |
-
)
|
623 |
-
|
624 |
-
height_slider.change(
|
625 |
-
fn=select_the_right_preset,
|
626 |
-
inputs=[width_slider, height_slider],
|
627 |
-
outputs=[target_ratio],
|
628 |
-
queue=False
|
629 |
)
|
630 |
-
|
631 |
-
resize_option.change(
|
632 |
-
fn=toggle_custom_resize_slider,
|
633 |
-
inputs=[resize_option],
|
634 |
-
outputs=[custom_resize_percentage],
|
635 |
-
queue=False
|
636 |
-
)
|
637 |
-
|
638 |
-
runout_button.click( # Clear the result
|
639 |
fn=clear_result,
|
640 |
inputs=None,
|
641 |
-
outputs=
|
642 |
-
).then(
|
643 |
fn=infer,
|
644 |
-
inputs=[
|
645 |
resize_option, custom_resize_percentage, prompt_input, alignment_dropdown,
|
646 |
overlap_left, overlap_right, overlap_top, overlap_bottom],
|
647 |
-
outputs=
|
648 |
-
).then(
|
649 |
fn=lambda x, history: update_history(x[1], history),
|
650 |
-
inputs=[
|
651 |
outputs=history_gallery,
|
652 |
-
).then(
|
653 |
fn=lambda: gr.update(visible=True),
|
654 |
inputs=None,
|
655 |
-
outputs=
|
656 |
)
|
657 |
-
|
658 |
-
prompt_input.submit( # Clear the result
|
659 |
fn=clear_result,
|
660 |
inputs=None,
|
661 |
-
outputs=
|
662 |
-
).then(
|
663 |
fn=infer,
|
664 |
-
inputs=[
|
665 |
resize_option, custom_resize_percentage, prompt_input, alignment_dropdown,
|
666 |
overlap_left, overlap_right, overlap_top, overlap_bottom],
|
667 |
-
outputs=
|
668 |
-
).then(
|
669 |
fn=lambda x, history: update_history(x[1], history),
|
670 |
-
inputs=[
|
671 |
outputs=history_gallery,
|
672 |
-
).then(
|
673 |
fn=lambda: gr.update(visible=True),
|
674 |
inputs=None,
|
675 |
-
outputs=
|
676 |
-
)
|
677 |
-
|
678 |
-
preview_button.click(
|
679 |
-
fn=preview_image_and_mask,
|
680 |
-
inputs=[outpaint_input_image, width_slider, height_slider, overlap_percentage, resize_option, custom_resize_percentage, alignment_dropdown,
|
681 |
-
overlap_left, overlap_right, overlap_top, overlap_bottom],
|
682 |
-
outputs=preview_image,
|
683 |
-
queue=False
|
684 |
-
)
|
685 |
-
|
686 |
-
runout_button.click(
|
687 |
-
fn=infer,
|
688 |
-
inputs=[outpaint_input_image, width_slider, height_slider, overlap_percentage, num_inference_steps,
|
689 |
-
resize_option, custom_resize_percentage, prompt_input, alignment_dropdown,
|
690 |
-
overlap_left, overlap_right, overlap_top, overlap_bottom],
|
691 |
-
outputs=result,
|
692 |
)
|
693 |
-
|
694 |
preview_button.click(
|
695 |
fn=preview_image_and_mask,
|
696 |
-
inputs=[
|
697 |
overlap_left, overlap_right, overlap_top, overlap_bottom],
|
698 |
-
outputs=preview_image,
|
699 |
queue=False
|
700 |
)
|
701 |
|
702 |
-
resize_option.change(
|
703 |
-
fn=lambda x: gr.update(visible=(x == "Custom")),
|
704 |
-
inputs=[resize_option],
|
705 |
-
outputs=[custom_resize_percentage]
|
706 |
-
)
|
707 |
-
|
708 |
demo.launch(show_error=True)
|
|
|
|
|
1 |
import spaces
|
2 |
+
import gradio as gr
|
3 |
import torch
|
4 |
from diffusers import AutoencoderKL, TCDScheduler
|
5 |
from diffusers.models.model_loading_utils import load_state_dict
|
6 |
from gradio_imageslider import ImageSlider
|
7 |
from huggingface_hub import hf_hub_download
|
|
|
8 |
from controlnet_union import ControlNetModel_Union
|
9 |
from pipeline_fill_sd_xl import StableDiffusionXLFillPipeline
|
|
|
10 |
from PIL import Image, ImageDraw
|
11 |
import numpy as np
|
12 |
|
|
|
21 |
"xinsir/controlnet-union-sdxl-1.0",
|
22 |
filename="config_promax.json",
|
23 |
)
|
|
|
24 |
config = ControlNetModel_Union.load_config(config_file)
|
25 |
controlnet_model = ControlNetModel_Union.from_config(config)
|
26 |
model_file = hf_hub_download(
|
|
|
32 |
controlnet_model, state_dict, model_file, "xinsir/controlnet-union-sdxl-1.0"
|
33 |
)
|
34 |
model.to(device="cuda", dtype=torch.float16)
|
|
|
35 |
vae = AutoencoderKL.from_pretrained(
|
36 |
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16
|
37 |
).to("cuda")
|
|
|
38 |
pipe = StableDiffusionXLFillPipeline.from_pretrained(
|
39 |
"SG161222/RealVisXL_V5.0_Lightning",
|
40 |
torch_dtype=torch.float16,
|
|
|
42 |
controlnet=model,
|
43 |
variant="fp16",
|
44 |
)
|
|
|
45 |
pipe = StableDiffusionXLFillPipeline.from_pretrained(
|
46 |
"GraydientPlatformAPI/lustify-lightning",
|
47 |
torch_dtype=torch.float16,
|
48 |
vae=vae,
|
49 |
controlnet=model,
|
50 |
)
|
|
|
51 |
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
|
|
|
52 |
pipe.to("cuda")
|
53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
@spaces.GPU(duration=12)
|
55 |
def fill_image(prompt, image, model_selection, paste_back):
|
56 |
+
print(f"Received image: {image}")
|
57 |
+
if image is None:
|
58 |
+
yield None, None
|
59 |
+
return
|
60 |
|
61 |
(
|
62 |
prompt_embeds,
|
|
|
64 |
pooled_prompt_embeds,
|
65 |
negative_pooled_prompt_embeds,
|
66 |
) = pipe.encode_prompt(prompt, "cuda", True)
|
|
|
67 |
source = image["background"]
|
68 |
mask = image["layers"][0]
|
|
|
69 |
alpha_channel = mask.split()[3]
|
70 |
binary_mask = alpha_channel.point(lambda p: p > 0 and 255)
|
71 |
cnet_image = source.copy()
|
|
|
82 |
|
83 |
print(f"{model_selection=}")
|
84 |
print(f"{paste_back=}")
|
|
|
85 |
if paste_back:
|
86 |
image = image.convert("RGBA")
|
87 |
cnet_image.paste(image, (0, 0), binary_mask)
|
88 |
else:
|
89 |
cnet_image = image
|
|
|
90 |
yield source, cnet_image
|
91 |
|
|
|
92 |
def clear_result():
|
93 |
return gr.update(value=None)
|
94 |
+
|
95 |
def can_expand(source_width, source_height, target_width, target_height, alignment):
|
|
|
96 |
if alignment in ("Left", "Right") and source_width >= target_width:
|
97 |
return False
|
98 |
if alignment in ("Top", "Bottom") and source_height >= target_height:
|
|
|
101 |
|
102 |
def prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom):
|
103 |
target_size = (width, height)
|
|
|
|
|
104 |
scale_factor = min(target_size[0] / image.width, target_size[1] / image.height)
|
105 |
new_width = int(image.width * scale_factor)
|
106 |
new_height = int(image.height * scale_factor)
|
|
|
|
|
|
|
107 |
|
108 |
+
source = image.resize((new_width, new_height), Image.LANCZOS)
|
109 |
if resize_option == "Full":
|
110 |
resize_percentage = 100
|
111 |
elif resize_option == "80%":
|
|
|
119 |
else: # Custom
|
120 |
resize_percentage = custom_resize_percentage
|
121 |
|
|
|
122 |
resize_factor = resize_percentage / 100
|
123 |
new_width = int(source.width * resize_factor)
|
124 |
new_height = int(source.height * resize_factor)
|
|
|
|
|
125 |
new_width = max(new_width, 64)
|
126 |
new_height = max(new_height, 64)
|
127 |
|
|
|
128 |
source = source.resize((new_width, new_height), Image.LANCZOS)
|
129 |
|
|
|
130 |
overlap_x = int(new_width * (overlap_percentage / 100))
|
131 |
overlap_y = int(new_height * (overlap_percentage / 100))
|
|
|
|
|
132 |
overlap_x = max(overlap_x, 1)
|
133 |
overlap_y = max(overlap_y, 1)
|
134 |
|
|
|
135 |
if alignment == "Middle":
|
136 |
margin_x = (target_size[0] - new_width) // 2
|
137 |
margin_y = (target_size[1] - new_height) // 2
|
|
|
148 |
margin_x = (target_size[0] - new_width) // 2
|
149 |
margin_y = target_size[1] - new_height
|
150 |
|
|
|
151 |
margin_x = max(0, min(margin_x, target_size[0] - new_width))
|
152 |
margin_y = max(0, min(margin_y, target_size[1] - new_height))
|
153 |
|
|
|
154 |
background = Image.new('RGB', target_size, (255, 255, 255))
|
155 |
background.paste(source, (margin_x, margin_y))
|
156 |
|
|
|
157 |
mask = Image.new('L', target_size, 255)
|
158 |
mask_draw = ImageDraw.Draw(mask)
|
159 |
|
|
|
160 |
white_gaps_patch = 2
|
|
|
161 |
left_overlap = margin_x + overlap_x if overlap_left else margin_x + white_gaps_patch
|
162 |
right_overlap = margin_x + new_width - overlap_x if overlap_right else margin_x + new_width - white_gaps_patch
|
163 |
top_overlap = margin_y + overlap_y if overlap_top else margin_y + white_gaps_patch
|
164 |
bottom_overlap = margin_y + new_height - overlap_y if overlap_bottom else margin_y + new_height - white_gaps_patch
|
165 |
+
|
166 |
if alignment == "Left":
|
167 |
left_overlap = margin_x + overlap_x if overlap_left else margin_x
|
168 |
elif alignment == "Right":
|
|
|
172 |
elif alignment == "Bottom":
|
173 |
bottom_overlap = margin_y + new_height - overlap_y if overlap_bottom else margin_y + new_height
|
174 |
|
|
|
|
|
175 |
mask_draw.rectangle([
|
176 |
(left_overlap, top_overlap),
|
177 |
(right_overlap, bottom_overlap)
|
178 |
], fill=0)
|
|
|
179 |
return background, mask
|
180 |
|
181 |
def preview_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom):
|
182 |
background, mask = prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom)
|
|
|
|
|
183 |
preview = background.copy().convert('RGBA')
|
184 |
+
red_overlay = Image.new('RGBA', background.size, (255, 0, 0, 64))
|
|
|
|
|
|
|
|
|
185 |
red_mask = Image.new('RGBA', background.size, (0, 0, 0, 0))
|
186 |
red_mask.paste(red_overlay, (0, 0), mask)
|
|
|
|
|
187 |
preview = Image.alpha_composite(preview, red_mask)
|
|
|
188 |
return preview
|
189 |
|
|
|
190 |
@spaces.GPU(duration=12)
|
191 |
def inpaint(prompt, image, inpaint_model, paste_back):
|
192 |
global pipe
|
|
|
197 |
vae=vae,
|
198 |
controlnet=model,
|
199 |
).to("cuda")
|
|
|
|
|
|
|
200 |
mask = Image.fromarray(image["mask"]).convert("L")
|
201 |
image = Image.fromarray(image["image"])
|
|
|
202 |
result = pipe(prompt=prompt, image=image, mask_image=mask).images[0]
|
|
|
|
|
203 |
if paste_back:
|
204 |
result.paste(image, (0, 0), Image.fromarray(255 - np.array(mask)))
|
|
|
205 |
return result
|
206 |
|
207 |
@spaces.GPU(duration=12)
|
208 |
def outpaint(image, width, height, overlap_percentage, num_inference_steps, resize_option, custom_resize_percentage, prompt_input, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom):
|
209 |
background, mask = prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom)
|
|
|
210 |
if not can_expand(background.width, background.height, width, height, alignment):
|
211 |
alignment = "Middle"
|
|
|
212 |
cnet_image = background.copy()
|
213 |
cnet_image.paste(0, (0, 0), mask)
|
|
|
214 |
final_prompt = f"{prompt_input} , high quality, 4k"
|
|
|
215 |
(
|
216 |
prompt_embeds,
|
217 |
negative_prompt_embeds,
|
218 |
pooled_prompt_embeds,
|
219 |
negative_pooled_prompt_embeds,
|
220 |
) = pipe.encode_prompt(final_prompt, "cuda", True)
|
|
|
221 |
for image in pipe(
|
222 |
prompt_embeds=prompt_embeds,
|
223 |
negative_prompt_embeds=negative_prompt_embeds,
|
|
|
227 |
num_inference_steps=num_inference_steps
|
228 |
):
|
229 |
yield cnet_image, image
|
|
|
230 |
image = image.convert("RGBA")
|
231 |
cnet_image.paste(image, (0, 0), mask)
|
|
|
232 |
yield background, cnet_image
|
233 |
|
234 |
@spaces.GPU(duration=12)
|
235 |
def infer(image, width, height, overlap_percentage, num_inference_steps, resize_option, custom_resize_percentage, prompt_input, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom):
|
236 |
background, mask = prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom)
|
|
|
237 |
if not can_expand(background.width, background.height, width, height, alignment):
|
238 |
alignment = "Middle"
|
|
|
239 |
cnet_image = background.copy()
|
240 |
cnet_image.paste(0, (0, 0), mask)
|
|
|
241 |
final_prompt = f"{prompt_input} , high quality, 4k"
|
|
|
242 |
(
|
243 |
prompt_embeds,
|
244 |
negative_prompt_embeds,
|
245 |
pooled_prompt_embeds,
|
246 |
negative_pooled_prompt_embeds,
|
247 |
) = pipe.encode_prompt(final_prompt, "cuda", True)
|
|
|
248 |
for image in pipe(
|
249 |
prompt_embeds=prompt_embeds,
|
250 |
negative_prompt_embeds=negative_prompt_embeds,
|
|
|
254 |
num_inference_steps=num_inference_steps
|
255 |
):
|
256 |
yield cnet_image, image
|
|
|
257 |
image = image.convert("RGBA")
|
258 |
cnet_image.paste(image, (0, 0), mask)
|
|
|
259 |
yield background, cnet_image
|
260 |
+
|
261 |
+
def use_output_as_input(output_image):
|
262 |
+
return gr.update(value=output_image[1])
|
263 |
|
264 |
def preload_presets(target_ratio, ui_width, ui_height):
|
|
|
265 |
if target_ratio == "9:16":
|
266 |
changed_width = 720
|
267 |
changed_height = 1280
|
|
|
280 |
return changed_width, changed_height, gr.update()
|
281 |
elif target_ratio == "Custom":
|
282 |
return ui_width, ui_height, gr.update(open=True)
|
283 |
+
else:
|
284 |
+
return ui_width, ui_height, gr.update()
|
285 |
|
286 |
def select_the_right_preset(user_width, user_height):
|
287 |
if user_width == 720 and user_height == 1280:
|
|
|
299 |
return gr.update(visible=(resize_option == "Custom"))
|
300 |
|
301 |
def update_history(new_image, history):
|
|
|
302 |
if history is None:
|
303 |
history = []
|
304 |
history.insert(0, new_image)
|
|
|
323 |
<p style="display: flex;gap: 6px;">
|
324 |
<a href="https://huggingface.co/spaces/fffiloni/diffusers-image-outpout?duplicate=true">
|
325 |
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-md.svg" alt="Duplicate this Space">
|
326 |
+
</a> to skip the queue and enjoy faster inference on the GPU of your choice
|
327 |
</p>
|
328 |
</div>
|
329 |
"""
|
330 |
|
331 |
with gr.Blocks(css=css, fill_height=True) as demo:
|
332 |
gr.Markdown("# Diffusers Inpaint and Outpaint")
|
|
|
333 |
with gr.Tabs():
|
334 |
with gr.TabItem("Inpaint"):
|
335 |
with gr.Column():
|
|
|
346 |
value="RealVisXL V5.0 Lightning",
|
347 |
label="Model",
|
348 |
)
|
|
|
349 |
with gr.Row():
|
350 |
run_button = gr.Button("Generate")
|
351 |
paste_back = gr.Checkbox(True, label="Paste back original")
|
|
|
352 |
with gr.Row(equal_height=False):
|
353 |
input_image = gr.ImageMask(
|
354 |
type="pil", label="Input Image", layers=True
|
|
|
355 |
)
|
|
|
356 |
result = ImageSlider(
|
357 |
interactive=False,
|
358 |
label="Generated Image",
|
359 |
)
|
|
|
360 |
use_as_input_button = gr.Button("Use as Input Image", visible=False)
|
|
|
|
|
|
|
|
|
361 |
use_as_input_button.click(
|
362 |
fn=use_output_as_input, inputs=[result], outputs=[input_image]
|
363 |
)
|
|
|
364 |
run_button.click(
|
365 |
fn=clear_result,
|
366 |
inputs=None,
|
|
|
372 |
).then(
|
373 |
fn=fill_image,
|
374 |
inputs=[prompt, input_image, model_selection, paste_back],
|
375 |
+
outputs=[result],
|
376 |
).then(
|
377 |
fn=lambda: gr.update(visible=True),
|
378 |
inputs=None,
|
379 |
outputs=use_as_input_button,
|
380 |
)
|
|
|
381 |
prompt.submit(
|
382 |
fn=clear_result,
|
383 |
inputs=None,
|
|
|
389 |
).then(
|
390 |
fn=fill_image,
|
391 |
inputs=[prompt, input_image, model_selection, paste_back],
|
392 |
+
outputs=[result],
|
393 |
).then(
|
394 |
fn=lambda: gr.update(visible=True),
|
395 |
inputs=None,
|
396 |
outputs=use_as_input_button,
|
397 |
)
|
|
|
398 |
with gr.TabItem("Outpaint"):
|
399 |
with gr.Column():
|
|
|
400 |
with gr.Row():
|
401 |
with gr.Column():
|
402 |
+
input_image_outpaint = gr.Image(
|
403 |
type="pil",
|
404 |
label="Input Image"
|
405 |
)
|
|
|
406 |
with gr.Row():
|
407 |
with gr.Column(scale=2):
|
408 |
prompt_input = gr.Textbox(label="Prompt (Optional)")
|
409 |
with gr.Column(scale=1):
|
410 |
runout_button = gr.Button("Generate")
|
|
|
411 |
with gr.Row():
|
412 |
target_ratio = gr.Radio(
|
413 |
label="Expected Ratio",
|
|
|
415 |
value="1:1",
|
416 |
scale=2
|
417 |
)
|
|
|
418 |
alignment_dropdown = gr.Dropdown(
|
419 |
choices=["Middle", "Left", "Right", "Top", "Bottom"],
|
420 |
value="Middle",
|
421 |
label="Alignment"
|
422 |
)
|
|
|
423 |
with gr.Accordion(label="Advanced settings", open=False) as settings_panel:
|
424 |
with gr.Column():
|
425 |
with gr.Row():
|
|
|
428 |
minimum=720,
|
429 |
maximum=1536,
|
430 |
step=8,
|
431 |
+
value=1280,
|
432 |
)
|
433 |
height_slider = gr.Slider(
|
434 |
label="Target Height",
|
435 |
minimum=720,
|
436 |
maximum=1536,
|
437 |
step=8,
|
438 |
+
value=1280,
|
439 |
)
|
|
|
440 |
num_inference_steps = gr.Slider(label="Steps", minimum=4, maximum=12, step=1, value=8)
|
441 |
with gr.Group():
|
442 |
overlap_percentage = gr.Slider(
|
|
|
466 |
value=50,
|
467 |
visible=False
|
468 |
)
|
|
|
469 |
with gr.Column():
|
470 |
preview_button = gr.Button("Preview alignment and mask")
|
|
|
|
|
471 |
gr.Examples(
|
472 |
examples=[
|
473 |
["./examples/example_1.webp", 1280, 720, "Middle"],
|
|
|
475 |
["./examples/example_3.jpg", 1024, 1024, "Top"],
|
476 |
["./examples/example_3.jpg", 1024, 1024, "Bottom"],
|
477 |
],
|
478 |
+
inputs=[input_image_outpaint, width_slider, height_slider, alignment_dropdown],
|
479 |
)
|
|
|
|
|
|
|
480 |
with gr.Column():
|
481 |
+
result_outpaint = ImageSlider(
|
482 |
interactive=False,
|
483 |
label="Generated Image",
|
484 |
)
|
485 |
+
use_as_input_button_outpaint = gr.Button("Use as Input Image", visible=False)
|
|
|
486 |
history_gallery = gr.Gallery(label="History", columns=6, object_fit="contain", interactive=False)
|
487 |
preview_image = gr.Image(label="Preview")
|
488 |
+
use_as_input_button_outpaint.click(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
489 |
fn=use_output_as_input,
|
490 |
+
inputs=[result_outpaint],
|
491 |
+
outputs=[input_image_outpaint]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
492 |
)
|
493 |
+
runout_button.click(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
494 |
fn=clear_result,
|
495 |
inputs=None,
|
496 |
+
outputs=result_outpaint,
|
497 |
+
).then(
|
498 |
fn=infer,
|
499 |
+
inputs=[input_image_outpaint, width_slider, height_slider, overlap_percentage, num_inference_steps,
|
500 |
resize_option, custom_resize_percentage, prompt_input, alignment_dropdown,
|
501 |
overlap_left, overlap_right, overlap_top, overlap_bottom],
|
502 |
+
outputs=[result_outpaint],
|
503 |
+
).then(
|
504 |
fn=lambda x, history: update_history(x[1], history),
|
505 |
+
inputs=[result_outpaint, history_gallery],
|
506 |
outputs=history_gallery,
|
507 |
+
).then(
|
508 |
fn=lambda: gr.update(visible=True),
|
509 |
inputs=None,
|
510 |
+
outputs=[use_as_input_button_outpaint],
|
511 |
)
|
512 |
+
prompt_input.submit(
|
|
|
513 |
fn=clear_result,
|
514 |
inputs=None,
|
515 |
+
outputs=result_outpaint,
|
516 |
+
).then(
|
517 |
fn=infer,
|
518 |
+
inputs=[input_image_outpaint, width_slider, height_slider, overlap_percentage, num_inference_steps,
|
519 |
resize_option, custom_resize_percentage, prompt_input, alignment_dropdown,
|
520 |
overlap_left, overlap_right, overlap_top, overlap_bottom],
|
521 |
+
outputs=[result_outpaint],
|
522 |
+
).then(
|
523 |
fn=lambda x, history: update_history(x[1], history),
|
524 |
+
inputs=[result_outpaint, history_gallery],
|
525 |
outputs=history_gallery,
|
526 |
+
).then(
|
527 |
fn=lambda: gr.update(visible=True),
|
528 |
inputs=None,
|
529 |
+
outputs=[use_as_input_button_outpaint],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
530 |
)
|
|
|
531 |
preview_button.click(
|
532 |
fn=preview_image_and_mask,
|
533 |
+
inputs=[input_image_outpaint, width_slider, height_slider, overlap_percentage, resize_option, custom_resize_percentage, alignment_dropdown,
|
534 |
overlap_left, overlap_right, overlap_top, overlap_bottom],
|
535 |
+
outputs=[preview_image],
|
536 |
queue=False
|
537 |
)
|
538 |
|
|
|
|
|
|
|
|
|
|
|
|
|
539 |
demo.launch(show_error=True)
|