LPX55 commited on
Commit
a88efc1
·
1 Parent(s): 6fbb74e

major: add sam2 masking tab

Browse files
Files changed (3) hide show
  1. .gitignore +1 -0
  2. app.py +6 -15
  3. sam2_mask.py +201 -0
.gitignore CHANGED
@@ -1 +1,2 @@
1
  .env
 
 
1
  .env
2
+ __pycache__/*
app.py CHANGED
@@ -9,13 +9,10 @@ from controlnet_union import ControlNetModel_Union
9
  from pipeline_fill_sd_xl import StableDiffusionXLFillPipeline
10
  from PIL import Image, ImageDraw
11
  import numpy as np
12
- from sam2.sam2_image_predictor import SAM2ImagePredictor
 
 
13
 
14
- # predictor = SAM2ImagePredictor.from_pretrained("facebook/sam2.1-hiera-large", device="cuda")
15
- # print(predictor)
16
- # with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16):
17
- # predictor.set_image(<your_image>)
18
- # masks, _, _ = predictor.predict(<input_prompts>)
19
 
20
  MODELS = {
21
  "RealVisXL V5.0 Lightning": "SG161222/RealVisXL_V5.0_Lightning",
@@ -479,15 +476,6 @@ with gr.Blocks(css=css, fill_height=True) as demo:
479
  )
480
  with gr.Column():
481
  preview_button = gr.Button("Preview alignment and mask")
482
- gr.Examples(
483
- examples=[
484
- ["./examples/example_1.webp", 1280, 720, "Middle"],
485
- ["./examples/example_2.jpg", 1440, 810, "Left"],
486
- ["./examples/example_3.jpg", 1024, 1024, "Top"],
487
- ["./examples/example_3.jpg", 1024, 1024, "Bottom"],
488
- ],
489
- inputs=[input_image_outpaint, width_slider, height_slider, alignment_dropdown],
490
- )
491
  with gr.Column():
492
  result_outpaint = ImageSlider(
493
  interactive=False,
@@ -496,6 +484,9 @@ with gr.Blocks(css=css, fill_height=True) as demo:
496
  use_as_input_button_outpaint = gr.Button("Use as Input Image", visible=False)
497
  history_gallery = gr.Gallery(label="History", columns=6, object_fit="contain", interactive=False)
498
  preview_image = gr.Image(label="Preview")
 
 
 
499
  with gr.TabItem("Misc"):
500
  with gr.Column():
501
  clear_cache_button = gr.Button("Clear CUDA Cache")
 
9
  from pipeline_fill_sd_xl import StableDiffusionXLFillPipeline
10
  from PIL import Image, ImageDraw
11
  import numpy as np
12
+ from sam2_mask import create_sam2_tab, sam_process
13
+
14
+ #from sam2.sam2_image_predictor import SAM2ImagePredictor
15
 
 
 
 
 
 
16
 
17
  MODELS = {
18
  "RealVisXL V5.0 Lightning": "SG161222/RealVisXL_V5.0_Lightning",
 
476
  )
477
  with gr.Column():
478
  preview_button = gr.Button("Preview alignment and mask")
 
 
 
 
 
 
 
 
 
479
  with gr.Column():
480
  result_outpaint = ImageSlider(
481
  interactive=False,
 
484
  use_as_input_button_outpaint = gr.Button("Use as Input Image", visible=False)
485
  history_gallery = gr.Gallery(label="History", columns=6, object_fit="contain", interactive=False)
486
  preview_image = gr.Image(label="Preview")
487
+ with gr.TabItem("SAM2 Masking"):
488
+ input_image, points_map, output_result_mask = create_sam2_tab()
489
+
490
  with gr.TabItem("Misc"):
491
  with gr.Column():
492
  clear_cache_button = gr.Button("Clear CUDA Cache")
sam2_mask.py ADDED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import os
3
+ os.environ["TORCH_CUDNN_SDPA_ENABLED"] = "1"
4
+ import torch
5
+ import numpy as np
6
+ import cv2
7
+ import matplotlib.pyplot as plt
8
+ from PIL import Image, ImageFilter
9
+ from sam2.build_sam import build_sam2
10
+ from sam2.sam2_image_predictor import SAM2ImagePredictor
11
+
12
+ def preprocess_image(image):
13
+ return image, gr.State([]), gr.State([]), image
14
+
15
+ def get_point(point_type, tracking_points, trackings_input_label, first_frame_path, evt: gr.SelectData):
16
+ print(f"You selected {evt.value} at {evt.index} from {evt.target}")
17
+ tracking_points.value.append(evt.index)
18
+ print(f"TRACKING POINT: {tracking_points.value}")
19
+ if point_type == "include":
20
+ trackings_input_label.value.append(1)
21
+ elif point_type == "exclude":
22
+ trackings_input_label.value.append(0)
23
+ print(f"TRACKING INPUT LABEL: {trackings_input_label.value}")
24
+ # Open the image and get its dimensions
25
+ transparent_background = Image.open(first_frame_path).convert('RGBA')
26
+ w, h = transparent_background.size
27
+ # Define the circle radius as a fraction of the smaller dimension
28
+ fraction = 0.02 # You can adjust this value as needed
29
+ radius = int(fraction * min(w, h))
30
+ # Create a transparent layer to draw on
31
+ transparent_layer = np.zeros((h, w, 4), dtype=np.uint8)
32
+ for index, track in enumerate(tracking_points.value):
33
+ if trackings_input_label.value[index] == 1:
34
+ cv2.circle(transparent_layer, track, radius, (0, 255, 0, 255), -1)
35
+ else:
36
+ cv2.circle(transparent_layer, track, radius, (255, 0, 0, 255), -1)
37
+ # Convert the transparent layer back to an image
38
+ transparent_layer = Image.fromarray(transparent_layer, 'RGBA')
39
+ selected_point_map = Image.alpha_composite(transparent_background, transparent_layer)
40
+ return tracking_points, trackings_input_label, selected_point_map
41
+
42
+ # use bfloat16 for the entire notebook
43
+ torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__()
44
+ if torch.cuda.get_device_properties(0).major >= 8:
45
+ # turn on tfloat32 for Ampere GPUs (https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices)
46
+ torch.backends.cuda.matmul.allow_tf32 = True
47
+ torch.backends.cudnn.allow_tf32 = True
48
+
49
+ def show_mask(mask, ax, random_color=False, borders=True):
50
+ if random_color:
51
+ color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
52
+ else:
53
+ color = np.array([30/255, 144/255, 255/255, 0.6])
54
+ h, w = mask.shape[-2:]
55
+ mask = mask.astype(np.uint8)
56
+ mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
57
+ if borders:
58
+ import cv2
59
+ contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
60
+ # Try to smooth contours
61
+ contours = [cv2.approxPolyDP(contour, epsilon=0.01, closed=True) for contour in contours]
62
+ mask_image = cv2.drawContours(mask_image, contours, -1, (1, 1, 1, 0.5), thickness=2)
63
+ ax.imshow(mask_image)
64
+
65
+ def show_points(coords, labels, ax, marker_size=375):
66
+ pos_points = coords[labels == 1]
67
+ neg_points = coords[labels == 0]
68
+ ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
69
+ ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
70
+
71
+ def show_box(box, ax):
72
+ x0, y0 = box[0], box[1]
73
+ w, h = box[2] - box[0], box[3] - box[1]
74
+ ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0, 0, 0, 0), lw=2))
75
+
76
+ def show_masks(image, masks, scores, point_coords=None, box_coords=None, input_labels=None, borders=True):
77
+ combined_images = [] # List to store filenames of images with masks overlaid
78
+ mask_images = [] # List to store filenames of separate mask images
79
+ for i, (mask, score) in enumerate(zip(masks, scores)):
80
+ # ---- Original Image with Mask Overlaid ----
81
+ plt.figure(figsize=(10, 10))
82
+ plt.imshow(image)
83
+ show_mask(mask, plt.gca(), borders=borders) # Draw the mask with borders
84
+ if box_coords is not None:
85
+ show_box(box_coords, plt.gca())
86
+ if len(scores) > 1:
87
+ plt.title(f"Mask {i+1}, Score: {score:.3f}", fontsize=18)
88
+ plt.axis('off')
89
+ # Save the figure as a JPG file
90
+ combined_filename = f"combined_image_{i+1}.jpg"
91
+ plt.savefig(combined_filename, format='jpg', bbox_inches='tight')
92
+ combined_images.append(combined_filename)
93
+ plt.close() # Close the figure to free up memory
94
+ # ---- Separate Mask Image (White Mask on Black Background) ----
95
+ # Create a black image
96
+ mask_image = np.zeros_like(image, dtype=np.uint8)
97
+ # The mask is a binary array where the masked area is 1, else 0.
98
+ # Convert the mask to a white color in the mask_image
99
+ mask_layer = (mask > 0).astype(np.uint8) * 255
100
+ for c in range(3): # Assuming RGB, repeat mask for all channels
101
+ mask_image[:, :, c] = mask_layer
102
+ # Save the mask image
103
+ mask_filename = f"mask_image_{i+1}.png"
104
+ Image.fromarray(mask_image).save(mask_filename)
105
+ mask_images.append(mask_filename)
106
+ plt.close() # Close the figure to free up memory
107
+ return combined_images, mask_images
108
+
109
+ def sam_process(input_image, tracking_points, trackings_input_label):
110
+ image = Image.open(input_image)
111
+ image = np.array(image.convert("RGB"))
112
+ # if checkpoint == "tiny":
113
+ # sam2_checkpoint = "./checkpoints/sam2_hiera_tiny.pt"
114
+ # model_cfg = "sam2_hiera_t.yaml"
115
+ # elif checkpoint == "small":
116
+ # sam2_checkpoint = "./checkpoints/sam2_hiera_small.pt"
117
+ # model_cfg = "sam2_hiera_s.yaml"
118
+ # elif checkpoint == "base-plus":
119
+ # sam2_checkpoint = "./checkpoints/sam2_hiera_base_plus.pt"
120
+ # model_cfg = "sam2_hiera_b+.yaml"
121
+ # elif checkpoint == "large":
122
+ # sam2_checkpoint = "./checkpoints/sam2_hiera_large.pt"
123
+ # model_cfg = "sam2_hiera_l.yaml"
124
+ predictor = SAM2ImagePredictor.from_pretrained("facebook/sam2.1-hiera-large")
125
+ # print(predictor)
126
+ with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16):
127
+ predictor.set_image(image)
128
+ input_point = np.array(tracking_points.value)
129
+ input_label = np.array(trackings_input_label.value)
130
+ print(predictor._features["image_embed"].shape, predictor._features["image_embed"][-1].shape)
131
+ masks, scores, logits = predictor.predict(
132
+ point_coords=input_point,
133
+ point_labels=input_label,
134
+ multimask_output=False,
135
+ )
136
+ sorted_ind = np.argsort(scores)[::-1]
137
+ masks = masks[sorted_ind]
138
+ scores = scores[sorted_ind]
139
+ logits = logits[sorted_ind]
140
+ print(masks.shape)
141
+ results, mask_results = show_masks(image, masks, scores, point_coords=input_point, input_labels=input_label, borders=True)
142
+ print(results)
143
+ return results[0], mask_results[0]
144
+ # sam2_model = build_sam2(model_cfg, sam2_checkpoint, device="cuda")
145
+ # predictor = SAM2ImagePredictor(sam2_model)
146
+
147
+
148
+
149
+ def create_sam2_tab():
150
+ first_frame_path = gr.State()
151
+ tracking_points = gr.State([])
152
+ trackings_input_label = gr.State([])
153
+ with gr.Column():
154
+ gr.Markdown("# SAM2 Image Predictor")
155
+ gr.Markdown("This is a simple demo for image segmentation with SAM2.")
156
+ gr.Markdown("""Instructions:
157
+ 1. Upload your image
158
+ 2. With 'include' point type selected, Click on the object to mask
159
+ 3. Switch to 'exclude' point type if you want to specify an area to avoid
160
+ 4. Submit !
161
+ """)
162
+ with gr.Row():
163
+ with gr.Column():
164
+ input_image = gr.Image(label="input image", interactive=False, type="filepath", visible=False)
165
+ points_map = gr.Image(
166
+ label="points map",
167
+ type="filepath",
168
+ interactive=True
169
+ )
170
+ with gr.Row():
171
+ point_type = gr.Radio(label="point type", choices=["include", "exclude"], value="include")
172
+ clear_points_btn = gr.Button("Clear Points")
173
+ checkpoint = gr.Dropdown(label="Checkpoint", choices=["tiny", "small", "base-plus", "large"], value="tiny")
174
+ submit_btn = gr.Button("Submit")
175
+ with gr.Column():
176
+ output_result = gr.Image()
177
+ output_result_mask = gr.Image()
178
+ clear_points_btn.click(
179
+ fn=admin_preprocess_image,
180
+ inputs=input_image,
181
+ outputs=[first_frame_path, tracking_points, trackings_input_label, points_map],
182
+ queue=False
183
+ )
184
+ points_map.upload(
185
+ fn=admin_preprocess_image,
186
+ inputs=[points_map],
187
+ outputs=[first_frame_path, tracking_points, trackings_input_label, input_image],
188
+ queue=False
189
+ )
190
+ points_map.select(
191
+ fn=admin_get_point,
192
+ inputs=[point_type, tracking_points, trackings_input_label, first_frame_path],
193
+ outputs=[tracking_points, trackings_input_label, points_map],
194
+ queue=False
195
+ )
196
+ submit_btn.click(
197
+ fn=sam_process,
198
+ inputs=[input_image, checkpoint, tracking_points, trackings_input_label],
199
+ outputs=[output_result, output_result_mask]
200
+ )
201
+ return input_image, points_map, output_result_mask