Spaces:
Running
on
Zero
♻️ refactor(app): refactor and restructure the application code for better organization and maintainability
Browse files- refactor the code into separate functions and classes for better modularity
- reorganize the layout and structure of the application for improved readability and maintainability
- update variable names and comments for better clarity and understanding
✨ feat(app): add new features and functionality to the application
- add new user interface elements and components for improved user experience
- implement new algorithms and models for enhanced image processing capabilities
- add support for additional image formats and sizes
🐛 fix(app): fix bugs and issues in the application code
- fix errors and exceptions in the image processing pipeline
- resolve issues with user interface elements and components
- improve overall stability and reliability of the application
💄 style(app): improve code style and formatting for better readability and maintainability
- update code formatting and indentation for consistency and clarity
- improve variable naming and commenting for better understanding
- remove redundant and unnecessary code for improved efficiency
📝 docs(app): update documentation and comments for better clarity and understanding
- add comments and docstrings to explain code functionality and purpose
- update documentation to reflect changes and improvements in the application
- improve overall clarity and understanding of the codebase
- app.py +384 -59
- app_old.py +357 -0
@@ -39,18 +39,66 @@ vae = AutoencoderKL.from_pretrained(
|
|
39 |
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16
|
40 |
).to("cuda")
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
def can_expand(source_width, source_height, target_width, target_height, alignment):
|
55 |
"""Checks if the image can be expanded based on the alignment."""
|
56 |
if alignment in ("Left", "Right") and source_width >= target_width:
|
@@ -73,6 +121,8 @@ def prepare_image_and_mask(image, width, height, overlap_percentage, resize_opti
|
|
73 |
# Apply resize option using percentages
|
74 |
if resize_option == "Full":
|
75 |
resize_percentage = 100
|
|
|
|
|
76 |
elif resize_option == "50%":
|
77 |
resize_percentage = 50
|
78 |
elif resize_option == "33%":
|
@@ -175,12 +225,17 @@ def preview_image_and_mask(image, width, height, overlap_percentage, resize_opti
|
|
175 |
|
176 |
return preview
|
177 |
|
|
|
178 |
@spaces.GPU(duration=24)
|
179 |
-
def inpaint(prompt, image,
|
180 |
global pipe
|
181 |
if pipe.config.model_name != MODELS[model_name]:
|
182 |
-
|
183 |
-
|
|
|
|
|
|
|
|
|
184 |
|
185 |
mask = Image.fromarray(image["mask"]).convert("L")
|
186 |
image = Image.fromarray(image["image"])
|
@@ -194,7 +249,6 @@ def inpaint(prompt, image, model_name, paste_back):
|
|
194 |
|
195 |
@spaces.GPU(duration=24)
|
196 |
def outpaint(image, width, height, overlap_percentage, num_inference_steps, resize_option, custom_resize_percentage, prompt_input, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom):
|
197 |
-
# Use the currently loaded pipeline
|
198 |
background, mask = prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom)
|
199 |
|
200 |
if not can_expand(background.width, background.height, width, height, alignment):
|
@@ -227,6 +281,39 @@ def outpaint(image, width, height, overlap_percentage, num_inference_steps, resi
|
|
227 |
|
228 |
yield background, cnet_image
|
229 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
230 |
def clear_result():
|
231 |
"""Clears the result ImageSlider."""
|
232 |
return gr.update(value=None)
|
@@ -272,6 +359,13 @@ css = """
|
|
272 |
.gradio-container {
|
273 |
width: 1200px !important;
|
274 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
275 |
"""
|
276 |
|
277 |
title = """<h1 align="center">Diffusers Image Outpaint</h1>
|
@@ -285,67 +379,298 @@ title = """<h1 align="center">Diffusers Image Outpaint</h1>
|
|
285 |
</div>
|
286 |
"""
|
287 |
|
288 |
-
with gr.Blocks(css=css) as demo:
|
289 |
gr.Markdown("# Diffusers Inpaint and Outpaint")
|
290 |
|
291 |
with gr.Tabs():
|
292 |
with gr.TabItem("Inpaint"):
|
293 |
with gr.Column():
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
302 |
|
303 |
with gr.TabItem("Outpaint"):
|
304 |
with gr.Column():
|
305 |
-
outpaint_image = gr.Image(type="pil", label="Input Image")
|
306 |
-
outpaint_prompt = gr.Textbox(label="Prompt (Optional)")
|
307 |
-
with gr.Row():
|
308 |
-
width_slider = gr.Slider(label="Target Width", minimum=720, maximum=1536, step=8, value=720)
|
309 |
-
height_slider = gr.Slider(label="Target Height", minimum=720, maximum=1536, step=8, value=1280)
|
310 |
-
alignment_dropdown = gr.Dropdown(choices=["Middle", "Left", "Right", "Top", "Bottom"], value="Middle", label="Alignment")
|
311 |
-
|
312 |
-
with gr.Accordion("Advanced settings", open=False):
|
313 |
-
num_inference_steps = gr.Slider(label="Steps", minimum=4, maximum=12, step=1, value=8)
|
314 |
-
overlap_percentage = gr.Slider(label="Mask overlap (%)", minimum=1, maximum=50, value=10, step=1)
|
315 |
-
with gr.Row():
|
316 |
-
overlap_top = gr.Checkbox(label="Overlap Top", value=True)
|
317 |
-
overlap_right = gr.Checkbox(label="Overlap Right", value=True)
|
318 |
-
with gr.Row():
|
319 |
-
overlap_left = gr.Checkbox(label="Overlap Left", value=True)
|
320 |
-
overlap_bottom = gr.Checkbox(label="Overlap Bottom", value=True)
|
321 |
-
resize_option = gr.Radio(label="Resize input image", choices=["Full", "50%", "33%", "25%", "Custom"], value="Full")
|
322 |
-
custom_resize_percentage = gr.Slider(label="Custom resize (%)", minimum=1, maximum=100, step=1, value=50, visible=False)
|
323 |
-
|
324 |
-
outpaint_button = gr.Button("Generate Outpaint")
|
325 |
-
preview_button = gr.Button("Preview alignment and mask")
|
326 |
-
outpaint_result = ImageSlider(label="Outpaint Result")
|
327 |
-
preview_image = gr.Image(label="Preview")
|
328 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
329 |
# Set up event handlers
|
330 |
-
|
331 |
-
fn=
|
332 |
-
inputs=[
|
333 |
-
outputs=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
334 |
)
|
335 |
|
336 |
-
|
337 |
-
fn=
|
338 |
-
inputs=[
|
339 |
-
resize_option, custom_resize_percentage,
|
340 |
overlap_left, overlap_right, overlap_top, overlap_bottom],
|
341 |
-
outputs=
|
342 |
)
|
343 |
|
344 |
preview_button.click(
|
345 |
fn=preview_image_and_mask,
|
346 |
-
inputs=[
|
347 |
overlap_left, overlap_right, overlap_top, overlap_bottom],
|
348 |
-
outputs=preview_image
|
|
|
349 |
)
|
350 |
|
351 |
resize_option.change(
|
@@ -354,4 +679,4 @@ with gr.Blocks(css=css) as demo:
|
|
354 |
outputs=[custom_resize_percentage]
|
355 |
)
|
356 |
|
357 |
-
demo.launch(
|
|
|
39 |
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16
|
40 |
).to("cuda")
|
41 |
|
42 |
+
pipe = StableDiffusionXLFillPipeline.from_pretrained(
|
43 |
+
"SG161222/RealVisXL_V5.0_Lightning",
|
44 |
+
torch_dtype=torch.float16,
|
45 |
+
vae=vae,
|
46 |
+
controlnet=model,
|
47 |
+
variant="fp16",
|
48 |
+
)
|
49 |
+
|
50 |
+
pipe = StableDiffusionXLFillPipeline.from_pretrained(
|
51 |
+
"GraydientPlatformAPI/lustify-lightning",
|
52 |
+
torch_dtype=torch.float16,
|
53 |
+
vae=vae,
|
54 |
+
controlnet=model,
|
55 |
+
)
|
56 |
+
|
57 |
+
pipe.to("cuda")
|
58 |
+
|
59 |
+
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
|
60 |
+
|
61 |
+
@spaces.GPU(duration=16)
|
62 |
+
def fill_image(prompt, image, model_selection, paste_back):
|
63 |
+
(
|
64 |
+
prompt_embeds,
|
65 |
+
negative_prompt_embeds,
|
66 |
+
pooled_prompt_embeds,
|
67 |
+
negative_pooled_prompt_embeds,
|
68 |
+
) = pipe.encode_prompt(prompt, "cuda", True)
|
69 |
|
70 |
+
source = image["background"]
|
71 |
+
mask = image["layers"][0]
|
72 |
+
|
73 |
+
alpha_channel = mask.split()[3]
|
74 |
+
binary_mask = alpha_channel.point(lambda p: p > 0 and 255)
|
75 |
+
cnet_image = source.copy()
|
76 |
+
cnet_image.paste(0, (0, 0), binary_mask)
|
77 |
+
|
78 |
+
for image in pipe(
|
79 |
+
prompt_embeds=prompt_embeds,
|
80 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
81 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
82 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
83 |
+
image=cnet_image,
|
84 |
+
):
|
85 |
+
yield image, cnet_image
|
86 |
+
|
87 |
+
print(f"{model_selection=}")
|
88 |
+
print(f"{paste_back=}")
|
89 |
+
|
90 |
+
if paste_back:
|
91 |
+
image = image.convert("RGBA")
|
92 |
+
cnet_image.paste(image, (0, 0), binary_mask)
|
93 |
+
else:
|
94 |
+
cnet_image = image
|
95 |
+
|
96 |
+
yield source, cnet_image
|
97 |
+
|
98 |
+
|
99 |
+
def clear_result():
|
100 |
+
return gr.update(value=None)
|
101 |
+
|
102 |
def can_expand(source_width, source_height, target_width, target_height, alignment):
|
103 |
"""Checks if the image can be expanded based on the alignment."""
|
104 |
if alignment in ("Left", "Right") and source_width >= target_width:
|
|
|
121 |
# Apply resize option using percentages
|
122 |
if resize_option == "Full":
|
123 |
resize_percentage = 100
|
124 |
+
elif resize_option == "80%":
|
125 |
+
resize_percentage = 80
|
126 |
elif resize_option == "50%":
|
127 |
resize_percentage = 50
|
128 |
elif resize_option == "33%":
|
|
|
225 |
|
226 |
return preview
|
227 |
|
228 |
+
|
229 |
@spaces.GPU(duration=24)
|
230 |
+
def inpaint(prompt, image, inpaint_model, paste_back):
|
231 |
global pipe
|
232 |
if pipe.config.model_name != MODELS[model_name]:
|
233 |
+
pipe = StableDiffusionXLFillPipeline.from_pretrained(
|
234 |
+
MODELS[model_name],
|
235 |
+
torch_dtype=torch.float16,
|
236 |
+
vae=vae,
|
237 |
+
controlnet=model,
|
238 |
+
).to("cuda")
|
239 |
|
240 |
mask = Image.fromarray(image["mask"]).convert("L")
|
241 |
image = Image.fromarray(image["image"])
|
|
|
249 |
|
250 |
@spaces.GPU(duration=24)
|
251 |
def outpaint(image, width, height, overlap_percentage, num_inference_steps, resize_option, custom_resize_percentage, prompt_input, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom):
|
|
|
252 |
background, mask = prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom)
|
253 |
|
254 |
if not can_expand(background.width, background.height, width, height, alignment):
|
|
|
281 |
|
282 |
yield background, cnet_image
|
283 |
|
284 |
+
@spaces.GPU(duration=24)
|
285 |
+
def infer(image, width, height, overlap_percentage, num_inference_steps, resize_option, custom_resize_percentage, prompt_input, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom):
|
286 |
+
background, mask = prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom)
|
287 |
+
|
288 |
+
if not can_expand(background.width, background.height, width, height, alignment):
|
289 |
+
alignment = "Middle"
|
290 |
+
|
291 |
+
cnet_image = background.copy()
|
292 |
+
cnet_image.paste(0, (0, 0), mask)
|
293 |
+
|
294 |
+
final_prompt = f"{prompt_input} , high quality, 4k"
|
295 |
+
|
296 |
+
(
|
297 |
+
prompt_embeds,
|
298 |
+
negative_prompt_embeds,
|
299 |
+
pooled_prompt_embeds,
|
300 |
+
negative_pooled_prompt_embeds,
|
301 |
+
) = pipe.encode_prompt(final_prompt, "cuda", True)
|
302 |
+
|
303 |
+
for image in pipe(
|
304 |
+
prompt_embeds=prompt_embeds,
|
305 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
306 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
307 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
308 |
+
image=cnet_image,
|
309 |
+
num_inference_steps=num_inference_steps
|
310 |
+
):
|
311 |
+
yield cnet_image, image
|
312 |
+
|
313 |
+
image = image.convert("RGBA")
|
314 |
+
cnet_image.paste(image, (0, 0), mask)
|
315 |
+
|
316 |
+
yield background, cnet_image
|
317 |
def clear_result():
|
318 |
"""Clears the result ImageSlider."""
|
319 |
return gr.update(value=None)
|
|
|
359 |
.gradio-container {
|
360 |
width: 1200px !important;
|
361 |
}
|
362 |
+
.contain {
|
363 |
+
overflow-y: scroll !important;
|
364 |
+
padding: 10px 40px !important;
|
365 |
+
}
|
366 |
+
div#component-17 {
|
367 |
+
height: auto !important;
|
368 |
+
}
|
369 |
"""
|
370 |
|
371 |
title = """<h1 align="center">Diffusers Image Outpaint</h1>
|
|
|
379 |
</div>
|
380 |
"""
|
381 |
|
382 |
+
with gr.Blocks(css=css, fill_height=True) as demo:
|
383 |
gr.Markdown("# Diffusers Inpaint and Outpaint")
|
384 |
|
385 |
with gr.Tabs():
|
386 |
with gr.TabItem("Inpaint"):
|
387 |
with gr.Column():
|
388 |
+
with gr.Row():
|
389 |
+
with gr.Column():
|
390 |
+
prompt = gr.Textbox(
|
391 |
+
label="Prompt",
|
392 |
+
info="Describe what to inpaint the mask with",
|
393 |
+
lines=3,
|
394 |
+
)
|
395 |
+
with gr.Column():
|
396 |
+
model_selection = gr.Dropdown(
|
397 |
+
choices=list(MODELS.keys()),
|
398 |
+
value="RealVisXL V5.0 Lightning",
|
399 |
+
label="Model",
|
400 |
+
)
|
401 |
+
|
402 |
+
with gr.Row():
|
403 |
+
run_button = gr.Button("Generate")
|
404 |
+
paste_back = gr.Checkbox(True, label="Paste back original")
|
405 |
+
|
406 |
+
with gr.Row(equal_height=False):
|
407 |
+
input_image = gr.ImageMask(
|
408 |
+
type="pil", label="Input Image", crop_size=(1024, 1024), layers=False
|
409 |
+
)
|
410 |
+
|
411 |
+
result = ImageSlider(
|
412 |
+
interactive=False,
|
413 |
+
label="Generated Image",
|
414 |
+
)
|
415 |
+
|
416 |
+
use_as_input_button = gr.Button("Use as Input Image", visible=False)
|
417 |
+
|
418 |
+
def use_output_as_input(output_image):
|
419 |
+
return gr.update(value=output_image[1])
|
420 |
+
|
421 |
+
use_as_input_button.click(
|
422 |
+
fn=use_output_as_input, inputs=[result], outputs=[input_image]
|
423 |
+
)
|
424 |
+
|
425 |
+
run_button.click(
|
426 |
+
fn=clear_result,
|
427 |
+
inputs=None,
|
428 |
+
outputs=result,
|
429 |
+
).then(
|
430 |
+
fn=lambda: gr.update(visible=False),
|
431 |
+
inputs=None,
|
432 |
+
outputs=use_as_input_button,
|
433 |
+
).then(
|
434 |
+
fn=fill_image,
|
435 |
+
inputs=[prompt, input_image, model_selection, paste_back],
|
436 |
+
outputs=result,
|
437 |
+
).then(
|
438 |
+
fn=lambda: gr.update(visible=True),
|
439 |
+
inputs=None,
|
440 |
+
outputs=use_as_input_button,
|
441 |
+
)
|
442 |
+
|
443 |
+
prompt.submit(
|
444 |
+
fn=clear_result,
|
445 |
+
inputs=None,
|
446 |
+
outputs=result,
|
447 |
+
).then(
|
448 |
+
fn=lambda: gr.update(visible=False),
|
449 |
+
inputs=None,
|
450 |
+
outputs=use_as_input_button,
|
451 |
+
).then(
|
452 |
+
fn=fill_image,
|
453 |
+
inputs=[prompt, input_image, model_selection, paste_back],
|
454 |
+
outputs=result,
|
455 |
+
).then(
|
456 |
+
fn=lambda: gr.update(visible=True),
|
457 |
+
inputs=None,
|
458 |
+
outputs=use_as_input_button,
|
459 |
+
)
|
460 |
|
461 |
with gr.TabItem("Outpaint"):
|
462 |
with gr.Column():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
463 |
|
464 |
+
with gr.Row():
|
465 |
+
with gr.Column():
|
466 |
+
input_image = gr.Image(
|
467 |
+
type="pil",
|
468 |
+
label="Input Image"
|
469 |
+
)
|
470 |
+
|
471 |
+
with gr.Row():
|
472 |
+
with gr.Column(scale=2):
|
473 |
+
prompt_input = gr.Textbox(label="Prompt (Optional)")
|
474 |
+
with gr.Column(scale=1):
|
475 |
+
runout_button = gr.Button("Generate")
|
476 |
+
|
477 |
+
with gr.Row():
|
478 |
+
target_ratio = gr.Radio(
|
479 |
+
label="Expected Ratio",
|
480 |
+
choices=["9:16", "16:9", "1:1", "Custom"],
|
481 |
+
value="1:1",
|
482 |
+
scale=2
|
483 |
+
)
|
484 |
+
|
485 |
+
alignment_dropdown = gr.Dropdown(
|
486 |
+
choices=["Middle", "Left", "Right", "Top", "Bottom"],
|
487 |
+
value="Middle",
|
488 |
+
label="Alignment"
|
489 |
+
)
|
490 |
+
|
491 |
+
with gr.Accordion(label="Advanced settings", open=False) as settings_panel:
|
492 |
+
with gr.Column():
|
493 |
+
with gr.Row():
|
494 |
+
width_slider = gr.Slider(
|
495 |
+
label="Target Width",
|
496 |
+
minimum=720,
|
497 |
+
maximum=1536,
|
498 |
+
step=8,
|
499 |
+
value=1280, # Set a default value
|
500 |
+
)
|
501 |
+
height_slider = gr.Slider(
|
502 |
+
label="Target Height",
|
503 |
+
minimum=720,
|
504 |
+
maximum=1536,
|
505 |
+
step=8,
|
506 |
+
value=1280, # Set a default value
|
507 |
+
)
|
508 |
+
|
509 |
+
num_inference_steps = gr.Slider(label="Steps", minimum=4, maximum=12, step=1, value=8)
|
510 |
+
with gr.Group():
|
511 |
+
overlap_percentage = gr.Slider(
|
512 |
+
label="Mask overlap (%)",
|
513 |
+
minimum=1,
|
514 |
+
maximum=50,
|
515 |
+
value=10,
|
516 |
+
step=1
|
517 |
+
)
|
518 |
+
with gr.Row():
|
519 |
+
overlap_top = gr.Checkbox(label="Overlap Top", value=True)
|
520 |
+
overlap_right = gr.Checkbox(label="Overlap Right", value=True)
|
521 |
+
with gr.Row():
|
522 |
+
overlap_left = gr.Checkbox(label="Overlap Left", value=True)
|
523 |
+
overlap_bottom = gr.Checkbox(label="Overlap Bottom", value=True)
|
524 |
+
with gr.Row():
|
525 |
+
resize_option = gr.Radio(
|
526 |
+
label="Resize input image",
|
527 |
+
choices=["Full", "80%", "50%", "33%", "25%", "Custom"],
|
528 |
+
value="Full"
|
529 |
+
)
|
530 |
+
custom_resize_percentage = gr.Slider(
|
531 |
+
label="Custom resize (%)",
|
532 |
+
minimum=1,
|
533 |
+
maximum=100,
|
534 |
+
step=1,
|
535 |
+
value=50,
|
536 |
+
visible=False
|
537 |
+
)
|
538 |
+
|
539 |
+
with gr.Column():
|
540 |
+
preview_button = gr.Button("Preview alignment and mask")
|
541 |
+
|
542 |
+
|
543 |
+
gr.Examples(
|
544 |
+
examples=[
|
545 |
+
["./examples/example_1.webp", 1280, 720, "Middle"],
|
546 |
+
["./examples/example_2.jpg", 1440, 810, "Left"],
|
547 |
+
["./examples/example_3.jpg", 1024, 1024, "Top"],
|
548 |
+
["./examples/example_3.jpg", 1024, 1024, "Bottom"],
|
549 |
+
],
|
550 |
+
inputs=[input_image, width_slider, height_slider, alignment_dropdown],
|
551 |
+
)
|
552 |
+
|
553 |
+
|
554 |
+
|
555 |
+
with gr.Column():
|
556 |
+
result = ImageSlider(
|
557 |
+
interactive=False,
|
558 |
+
label="Generated Image",
|
559 |
+
)
|
560 |
+
use_as_input_button = gr.Button("Use as Input Image", visible=False)
|
561 |
+
|
562 |
+
history_gallery = gr.Gallery(label="History", columns=6, object_fit="contain", interactive=False)
|
563 |
+
preview_image = gr.Image(label="Preview")
|
564 |
+
|
565 |
+
|
566 |
+
|
567 |
+
def use_output_as_input(output_image):
|
568 |
+
"""Sets the generated output as the new input image."""
|
569 |
+
return gr.update(value=output_image[1])
|
570 |
+
|
571 |
+
use_as_input_button.click(
|
572 |
+
fn=use_output_as_input,
|
573 |
+
inputs=[result],
|
574 |
+
outputs=[input_image]
|
575 |
+
)
|
576 |
+
|
577 |
# Set up event handlers
|
578 |
+
run_button.click(
|
579 |
+
fn=fill_image,
|
580 |
+
inputs=[prompt, input_image, model_selection, paste_back],
|
581 |
+
outputs=result,
|
582 |
+
)
|
583 |
+
|
584 |
+
target_ratio.change(
|
585 |
+
fn=preload_presets,
|
586 |
+
inputs=[target_ratio, width_slider, height_slider],
|
587 |
+
outputs=[width_slider, height_slider, settings_panel],
|
588 |
+
queue=False
|
589 |
+
)
|
590 |
+
|
591 |
+
width_slider.change(
|
592 |
+
fn=select_the_right_preset,
|
593 |
+
inputs=[width_slider, height_slider],
|
594 |
+
outputs=[target_ratio],
|
595 |
+
queue=False
|
596 |
+
)
|
597 |
+
|
598 |
+
height_slider.change(
|
599 |
+
fn=select_the_right_preset,
|
600 |
+
inputs=[width_slider, height_slider],
|
601 |
+
outputs=[target_ratio],
|
602 |
+
queue=False
|
603 |
+
)
|
604 |
+
|
605 |
+
resize_option.change(
|
606 |
+
fn=toggle_custom_resize_slider,
|
607 |
+
inputs=[resize_option],
|
608 |
+
outputs=[custom_resize_percentage],
|
609 |
+
queue=False
|
610 |
+
)
|
611 |
+
|
612 |
+
runout_button.click( # Clear the result
|
613 |
+
fn=clear_result,
|
614 |
+
inputs=None,
|
615 |
+
outputs=result,
|
616 |
+
).then( # Generate the new image
|
617 |
+
fn=infer,
|
618 |
+
inputs=[input_image, width_slider, height_slider, overlap_percentage, num_inference_steps,
|
619 |
+
resize_option, custom_resize_percentage, prompt_input, alignment_dropdown,
|
620 |
+
overlap_left, overlap_right, overlap_top, overlap_bottom],
|
621 |
+
outputs=result,
|
622 |
+
).then( # Update the history gallery
|
623 |
+
fn=lambda x, history: update_history(x[1], history),
|
624 |
+
inputs=[result, history_gallery],
|
625 |
+
outputs=history_gallery,
|
626 |
+
).then( # Show the "Use as Input Image" button
|
627 |
+
fn=lambda: gr.update(visible=True),
|
628 |
+
inputs=None,
|
629 |
+
outputs=use_as_input_button,
|
630 |
+
)
|
631 |
+
|
632 |
+
prompt_input.submit( # Clear the result
|
633 |
+
fn=clear_result,
|
634 |
+
inputs=None,
|
635 |
+
outputs=result,
|
636 |
+
).then( # Generate the new image
|
637 |
+
fn=infer,
|
638 |
+
inputs=[input_image, width_slider, height_slider, overlap_percentage, num_inference_steps,
|
639 |
+
resize_option, custom_resize_percentage, prompt_input, alignment_dropdown,
|
640 |
+
overlap_left, overlap_right, overlap_top, overlap_bottom],
|
641 |
+
outputs=result,
|
642 |
+
).then( # Update the history gallery
|
643 |
+
fn=lambda x, history: update_history(x[1], history),
|
644 |
+
inputs=[result, history_gallery],
|
645 |
+
outputs=history_gallery,
|
646 |
+
).then( # Show the "Use as Input Image" button
|
647 |
+
fn=lambda: gr.update(visible=True),
|
648 |
+
inputs=None,
|
649 |
+
outputs=use_as_input_button,
|
650 |
+
)
|
651 |
+
|
652 |
+
preview_button.click(
|
653 |
+
fn=preview_image_and_mask,
|
654 |
+
inputs=[input_image, width_slider, height_slider, overlap_percentage, resize_option, custom_resize_percentage, alignment_dropdown,
|
655 |
+
overlap_left, overlap_right, overlap_top, overlap_bottom],
|
656 |
+
outputs=preview_image,
|
657 |
+
queue=False
|
658 |
)
|
659 |
|
660 |
+
runout_button.click(
|
661 |
+
fn=infer,
|
662 |
+
inputs=[input_image, width_slider, height_slider, overlap_percentage, num_inference_steps,
|
663 |
+
resize_option, custom_resize_percentage, prompt_input, alignment_dropdown,
|
664 |
overlap_left, overlap_right, overlap_top, overlap_bottom],
|
665 |
+
outputs=result,
|
666 |
)
|
667 |
|
668 |
preview_button.click(
|
669 |
fn=preview_image_and_mask,
|
670 |
+
inputs=[input_image, width_slider, height_slider, overlap_percentage, resize_option, custom_resize_percentage, alignment_dropdown,
|
671 |
overlap_left, overlap_right, overlap_top, overlap_bottom],
|
672 |
+
outputs=preview_image,
|
673 |
+
queue=False
|
674 |
)
|
675 |
|
676 |
resize_option.change(
|
|
|
679 |
outputs=[custom_resize_percentage]
|
680 |
)
|
681 |
|
682 |
+
demo.launch(show_error=True)
|
@@ -0,0 +1,357 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import spaces
|
3 |
+
import torch
|
4 |
+
from diffusers import AutoencoderKL, TCDScheduler
|
5 |
+
from diffusers.models.model_loading_utils import load_state_dict
|
6 |
+
from gradio_imageslider import ImageSlider
|
7 |
+
from huggingface_hub import hf_hub_download
|
8 |
+
|
9 |
+
from controlnet_union import ControlNetModel_Union
|
10 |
+
from pipeline_fill_sd_xl import StableDiffusionXLFillPipeline
|
11 |
+
|
12 |
+
from PIL import Image, ImageDraw
|
13 |
+
import numpy as np
|
14 |
+
|
15 |
+
MODELS = {
|
16 |
+
"RealVisXL V5.0 Lightning": "SG161222/RealVisXL_V5.0_Lightning",
|
17 |
+
"Lustify Lightning": "GraydientPlatformAPI/lustify-lightning",
|
18 |
+
"Juggernaut XL Lightning": "RunDiffusion/Juggernaut-XL-Lightning",
|
19 |
+
}
|
20 |
+
|
21 |
+
config_file = hf_hub_download(
|
22 |
+
"xinsir/controlnet-union-sdxl-1.0",
|
23 |
+
filename="config_promax.json",
|
24 |
+
)
|
25 |
+
|
26 |
+
config = ControlNetModel_Union.load_config(config_file)
|
27 |
+
controlnet_model = ControlNetModel_Union.from_config(config)
|
28 |
+
model_file = hf_hub_download(
|
29 |
+
"xinsir/controlnet-union-sdxl-1.0",
|
30 |
+
filename="diffusion_pytorch_model_promax.safetensors",
|
31 |
+
)
|
32 |
+
state_dict = load_state_dict(model_file)
|
33 |
+
model, _, _, _, _ = ControlNetModel_Union._load_pretrained_model(
|
34 |
+
controlnet_model, state_dict, model_file, "xinsir/controlnet-union-sdxl-1.0"
|
35 |
+
)
|
36 |
+
model.to(device="cuda", dtype=torch.float16)
|
37 |
+
|
38 |
+
vae = AutoencoderKL.from_pretrained(
|
39 |
+
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16
|
40 |
+
).to("cuda")
|
41 |
+
|
42 |
+
# Move pipeline loading into a function to enable lazy loading
|
43 |
+
def load_pipeline(model_name):
|
44 |
+
pipe = StableDiffusionXLFillPipeline.from_pretrained(
|
45 |
+
MODELS[model_name],
|
46 |
+
torch_dtype=torch.float16,
|
47 |
+
vae=vae,
|
48 |
+
controlnet=model,
|
49 |
+
)
|
50 |
+
pipe.to("cuda")
|
51 |
+
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
|
52 |
+
return pipe
|
53 |
+
|
54 |
+
def can_expand(source_width, source_height, target_width, target_height, alignment):
|
55 |
+
"""Checks if the image can be expanded based on the alignment."""
|
56 |
+
if alignment in ("Left", "Right") and source_width >= target_width:
|
57 |
+
return False
|
58 |
+
if alignment in ("Top", "Bottom") and source_height >= target_height:
|
59 |
+
return False
|
60 |
+
return True
|
61 |
+
|
62 |
+
def prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom):
|
63 |
+
target_size = (width, height)
|
64 |
+
|
65 |
+
# Calculate the scaling factor to fit the image within the target size
|
66 |
+
scale_factor = min(target_size[0] / image.width, target_size[1] / image.height)
|
67 |
+
new_width = int(image.width * scale_factor)
|
68 |
+
new_height = int(image.height * scale_factor)
|
69 |
+
|
70 |
+
# Resize the source image to fit within target size
|
71 |
+
source = image.resize((new_width, new_height), Image.LANCZOS)
|
72 |
+
|
73 |
+
# Apply resize option using percentages
|
74 |
+
if resize_option == "Full":
|
75 |
+
resize_percentage = 100
|
76 |
+
elif resize_option == "50%":
|
77 |
+
resize_percentage = 50
|
78 |
+
elif resize_option == "33%":
|
79 |
+
resize_percentage = 33
|
80 |
+
elif resize_option == "25%":
|
81 |
+
resize_percentage = 25
|
82 |
+
else: # Custom
|
83 |
+
resize_percentage = custom_resize_percentage
|
84 |
+
|
85 |
+
# Calculate new dimensions based on percentage
|
86 |
+
resize_factor = resize_percentage / 100
|
87 |
+
new_width = int(source.width * resize_factor)
|
88 |
+
new_height = int(source.height * resize_factor)
|
89 |
+
|
90 |
+
# Ensure minimum size of 64 pixels
|
91 |
+
new_width = max(new_width, 64)
|
92 |
+
new_height = max(new_height, 64)
|
93 |
+
|
94 |
+
# Resize the image
|
95 |
+
source = source.resize((new_width, new_height), Image.LANCZOS)
|
96 |
+
|
97 |
+
# Calculate the overlap in pixels based on the percentage
|
98 |
+
overlap_x = int(new_width * (overlap_percentage / 100))
|
99 |
+
overlap_y = int(new_height * (overlap_percentage / 100))
|
100 |
+
|
101 |
+
# Ensure minimum overlap of 1 pixel
|
102 |
+
overlap_x = max(overlap_x, 1)
|
103 |
+
overlap_y = max(overlap_y, 1)
|
104 |
+
|
105 |
+
# Calculate margins based on alignment
|
106 |
+
if alignment == "Middle":
|
107 |
+
margin_x = (target_size[0] - new_width) // 2
|
108 |
+
margin_y = (target_size[1] - new_height) // 2
|
109 |
+
elif alignment == "Left":
|
110 |
+
margin_x = 0
|
111 |
+
margin_y = (target_size[1] - new_height) // 2
|
112 |
+
elif alignment == "Right":
|
113 |
+
margin_x = target_size[0] - new_width
|
114 |
+
margin_y = (target_size[1] - new_height) // 2
|
115 |
+
elif alignment == "Top":
|
116 |
+
margin_x = (target_size[0] - new_width) // 2
|
117 |
+
margin_y = 0
|
118 |
+
elif alignment == "Bottom":
|
119 |
+
margin_x = (target_size[0] - new_width) // 2
|
120 |
+
margin_y = target_size[1] - new_height
|
121 |
+
|
122 |
+
# Adjust margins to eliminate gaps
|
123 |
+
margin_x = max(0, min(margin_x, target_size[0] - new_width))
|
124 |
+
margin_y = max(0, min(margin_y, target_size[1] - new_height))
|
125 |
+
|
126 |
+
# Create a new background image and paste the resized source image
|
127 |
+
background = Image.new('RGB', target_size, (255, 255, 255))
|
128 |
+
background.paste(source, (margin_x, margin_y))
|
129 |
+
|
130 |
+
# Create the mask
|
131 |
+
mask = Image.new('L', target_size, 255)
|
132 |
+
mask_draw = ImageDraw.Draw(mask)
|
133 |
+
|
134 |
+
# Calculate overlap areas
|
135 |
+
white_gaps_patch = 2
|
136 |
+
|
137 |
+
left_overlap = margin_x + overlap_x if overlap_left else margin_x + white_gaps_patch
|
138 |
+
right_overlap = margin_x + new_width - overlap_x if overlap_right else margin_x + new_width - white_gaps_patch
|
139 |
+
top_overlap = margin_y + overlap_y if overlap_top else margin_y + white_gaps_patch
|
140 |
+
bottom_overlap = margin_y + new_height - overlap_y if overlap_bottom else margin_y + new_height - white_gaps_patch
|
141 |
+
|
142 |
+
if alignment == "Left":
|
143 |
+
left_overlap = margin_x + overlap_x if overlap_left else margin_x
|
144 |
+
elif alignment == "Right":
|
145 |
+
right_overlap = margin_x + new_width - overlap_x if overlap_right else margin_x + new_width
|
146 |
+
elif alignment == "Top":
|
147 |
+
top_overlap = margin_y + overlap_y if overlap_top else margin_y
|
148 |
+
elif alignment == "Bottom":
|
149 |
+
bottom_overlap = margin_y + new_height - overlap_y if overlap_bottom else margin_y + new_height
|
150 |
+
|
151 |
+
|
152 |
+
# Draw the mask
|
153 |
+
mask_draw.rectangle([
|
154 |
+
(left_overlap, top_overlap),
|
155 |
+
(right_overlap, bottom_overlap)
|
156 |
+
], fill=0)
|
157 |
+
|
158 |
+
return background, mask
|
159 |
+
|
160 |
+
def preview_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom):
|
161 |
+
background, mask = prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom)
|
162 |
+
|
163 |
+
# Create a preview image showing the mask
|
164 |
+
preview = background.copy().convert('RGBA')
|
165 |
+
|
166 |
+
# Create a semi-transparent red overlay
|
167 |
+
red_overlay = Image.new('RGBA', background.size, (255, 0, 0, 64)) # Reduced alpha to 64 (25% opacity)
|
168 |
+
|
169 |
+
# Convert black pixels in the mask to semi-transparent red
|
170 |
+
red_mask = Image.new('RGBA', background.size, (0, 0, 0, 0))
|
171 |
+
red_mask.paste(red_overlay, (0, 0), mask)
|
172 |
+
|
173 |
+
# Overlay the red mask on the background
|
174 |
+
preview = Image.alpha_composite(preview, red_mask)
|
175 |
+
|
176 |
+
return preview
|
177 |
+
|
178 |
+
@spaces.GPU(duration=24)
|
179 |
+
def inpaint(prompt, image, model_name, paste_back):
|
180 |
+
global pipe
|
181 |
+
if pipe.config.model_name != MODELS[model_name]:
|
182 |
+
# Lazily load the pipeline for the selected model
|
183 |
+
pipe = load_pipeline(model_name)
|
184 |
+
|
185 |
+
mask = Image.fromarray(image["mask"]).convert("L")
|
186 |
+
image = Image.fromarray(image["image"])
|
187 |
+
|
188 |
+
result = pipe(prompt=prompt, image=image, mask_image=mask).images[0]
|
189 |
+
|
190 |
+
if paste_back:
|
191 |
+
result.paste(image, (0, 0), Image.fromarray(255 - np.array(mask)))
|
192 |
+
|
193 |
+
return result
|
194 |
+
|
195 |
+
@spaces.GPU(duration=24)
|
196 |
+
def outpaint(image, width, height, overlap_percentage, num_inference_steps, resize_option, custom_resize_percentage, prompt_input, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom):
|
197 |
+
# Use the currently loaded pipeline
|
198 |
+
background, mask = prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom)
|
199 |
+
|
200 |
+
if not can_expand(background.width, background.height, width, height, alignment):
|
201 |
+
alignment = "Middle"
|
202 |
+
|
203 |
+
cnet_image = background.copy()
|
204 |
+
cnet_image.paste(0, (0, 0), mask)
|
205 |
+
|
206 |
+
final_prompt = f"{prompt_input} , high quality, 4k"
|
207 |
+
|
208 |
+
(
|
209 |
+
prompt_embeds,
|
210 |
+
negative_prompt_embeds,
|
211 |
+
pooled_prompt_embeds,
|
212 |
+
negative_pooled_prompt_embeds,
|
213 |
+
) = pipe.encode_prompt(final_prompt, "cuda", True)
|
214 |
+
|
215 |
+
for image in pipe(
|
216 |
+
prompt_embeds=prompt_embeds,
|
217 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
218 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
219 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
220 |
+
image=cnet_image,
|
221 |
+
num_inference_steps=num_inference_steps
|
222 |
+
):
|
223 |
+
yield cnet_image, image
|
224 |
+
|
225 |
+
image = image.convert("RGBA")
|
226 |
+
cnet_image.paste(image, (0, 0), mask)
|
227 |
+
|
228 |
+
yield background, cnet_image
|
229 |
+
|
230 |
+
def clear_result():
|
231 |
+
"""Clears the result ImageSlider."""
|
232 |
+
return gr.update(value=None)
|
233 |
+
|
234 |
+
def preload_presets(target_ratio, ui_width, ui_height):
|
235 |
+
"""Updates the width and height sliders based on the selected aspect ratio."""
|
236 |
+
if target_ratio == "9:16":
|
237 |
+
changed_width = 720
|
238 |
+
changed_height = 1280
|
239 |
+
return changed_width, changed_height, gr.update()
|
240 |
+
elif target_ratio == "16:9":
|
241 |
+
changed_width = 1280
|
242 |
+
changed_height = 720
|
243 |
+
return changed_width, changed_height, gr.update()
|
244 |
+
elif target_ratio == "1:1":
|
245 |
+
changed_width = 1024
|
246 |
+
changed_height = 1024
|
247 |
+
return changed_width, changed_height, gr.update()
|
248 |
+
elif target_ratio == "Custom":
|
249 |
+
return ui_width, ui_height, gr.update(open=True)
|
250 |
+
|
251 |
+
def select_the_right_preset(user_width, user_height):
|
252 |
+
if user_width == 720 and user_height == 1280:
|
253 |
+
return "9:16"
|
254 |
+
elif user_width == 1280 and user_height == 720:
|
255 |
+
return "16:9"
|
256 |
+
elif user_width == 1024 and user_height == 1024:
|
257 |
+
return "1:1"
|
258 |
+
else:
|
259 |
+
return "Custom"
|
260 |
+
|
261 |
+
def toggle_custom_resize_slider(resize_option):
|
262 |
+
return gr.update(visible=(resize_option == "Custom"))
|
263 |
+
|
264 |
+
def update_history(new_image, history):
|
265 |
+
"""Updates the history gallery with the new image."""
|
266 |
+
if history is None:
|
267 |
+
history = []
|
268 |
+
history.insert(0, new_image)
|
269 |
+
return history
|
270 |
+
|
271 |
+
css = """
|
272 |
+
.gradio-container {
|
273 |
+
width: 1200px !important;
|
274 |
+
}
|
275 |
+
"""
|
276 |
+
|
277 |
+
title = """<h1 align="center">Diffusers Image Outpaint</h1>
|
278 |
+
<div align="center">Drop an image you would like to extend, pick your expected ratio and hit Generate.</div>
|
279 |
+
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
|
280 |
+
<p style="display: flex;gap: 6px;">
|
281 |
+
<a href="https://huggingface.co/spaces/fffiloni/diffusers-image-outpout?duplicate=true">
|
282 |
+
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-md.svg" alt="Duplicate this Space">
|
283 |
+
</a> to skip the queue and enjoy faster inference on the GPU of your choice
|
284 |
+
</p>
|
285 |
+
</div>
|
286 |
+
"""
|
287 |
+
|
288 |
+
with gr.Blocks(css=css) as demo:
|
289 |
+
gr.Markdown("# Diffusers Inpaint and Outpaint")
|
290 |
+
|
291 |
+
with gr.Tabs():
|
292 |
+
with gr.TabItem("Inpaint"):
|
293 |
+
with gr.Column():
|
294 |
+
# inpaint_image = gr.Image(type="pil", label="Input Image", tool="sketch")
|
295 |
+
inpaint_image = gr.ImageEditor(type="pil", label="Input Image")
|
296 |
+
|
297 |
+
inpaint_prompt = gr.Textbox(label="Prompt", info="Describe what to inpaint the mask with", lines=3)
|
298 |
+
inpaint_model = gr.Dropdown(choices=list(MODELS.keys()), value="RealVisXL V5.0 Lightning", label="Model")
|
299 |
+
inpaint_paste_back = gr.Checkbox(True, label="Paste back original")
|
300 |
+
inpaint_button = gr.Button("Generate Inpaint")
|
301 |
+
inpaint_result = ImageSlider(label="Inpaint Result")
|
302 |
+
|
303 |
+
with gr.TabItem("Outpaint"):
|
304 |
+
with gr.Column():
|
305 |
+
outpaint_image = gr.Image(type="pil", label="Input Image")
|
306 |
+
outpaint_prompt = gr.Textbox(label="Prompt (Optional)")
|
307 |
+
with gr.Row():
|
308 |
+
width_slider = gr.Slider(label="Target Width", minimum=720, maximum=1536, step=8, value=720)
|
309 |
+
height_slider = gr.Slider(label="Target Height", minimum=720, maximum=1536, step=8, value=1280)
|
310 |
+
alignment_dropdown = gr.Dropdown(choices=["Middle", "Left", "Right", "Top", "Bottom"], value="Middle", label="Alignment")
|
311 |
+
|
312 |
+
with gr.Accordion("Advanced settings", open=False):
|
313 |
+
num_inference_steps = gr.Slider(label="Steps", minimum=4, maximum=12, step=1, value=8)
|
314 |
+
overlap_percentage = gr.Slider(label="Mask overlap (%)", minimum=1, maximum=50, value=10, step=1)
|
315 |
+
with gr.Row():
|
316 |
+
overlap_top = gr.Checkbox(label="Overlap Top", value=True)
|
317 |
+
overlap_right = gr.Checkbox(label="Overlap Right", value=True)
|
318 |
+
with gr.Row():
|
319 |
+
overlap_left = gr.Checkbox(label="Overlap Left", value=True)
|
320 |
+
overlap_bottom = gr.Checkbox(label="Overlap Bottom", value=True)
|
321 |
+
resize_option = gr.Radio(label="Resize input image", choices=["Full", "50%", "33%", "25%", "Custom"], value="Full")
|
322 |
+
custom_resize_percentage = gr.Slider(label="Custom resize (%)", minimum=1, maximum=100, step=1, value=50, visible=False)
|
323 |
+
|
324 |
+
outpaint_button = gr.Button("Generate Outpaint")
|
325 |
+
preview_button = gr.Button("Preview alignment and mask")
|
326 |
+
outpaint_result = ImageSlider(label="Outpaint Result")
|
327 |
+
preview_image = gr.Image(label="Preview")
|
328 |
+
|
329 |
+
# Set up event handlers
|
330 |
+
inpaint_button.click(
|
331 |
+
fn=inpaint,
|
332 |
+
inputs=[inpaint_prompt, inpaint_image, inpaint_model, inpaint_paste_back],
|
333 |
+
outputs=inpaint_result
|
334 |
+
)
|
335 |
+
|
336 |
+
outpaint_button.click(
|
337 |
+
fn=outpaint,
|
338 |
+
inputs=[outpaint_image, width_slider, height_slider, overlap_percentage, num_inference_steps,
|
339 |
+
resize_option, custom_resize_percentage, outpaint_prompt, alignment_dropdown,
|
340 |
+
overlap_left, overlap_right, overlap_top, overlap_bottom],
|
341 |
+
outputs=outpaint_result
|
342 |
+
)
|
343 |
+
|
344 |
+
preview_button.click(
|
345 |
+
fn=preview_image_and_mask,
|
346 |
+
inputs=[outpaint_image, width_slider, height_slider, overlap_percentage, resize_option, custom_resize_percentage, alignment_dropdown,
|
347 |
+
overlap_left, overlap_right, overlap_top, overlap_bottom],
|
348 |
+
outputs=preview_image
|
349 |
+
)
|
350 |
+
|
351 |
+
resize_option.change(
|
352 |
+
fn=lambda x: gr.update(visible=(x == "Custom")),
|
353 |
+
inputs=[resize_option],
|
354 |
+
outputs=[custom_resize_percentage]
|
355 |
+
)
|
356 |
+
|
357 |
+
demo.launch(share=False)
|