Spaces:
Running
on
Zero
Running
on
Zero
attemp was made
Browse files- sam2_mask.py +56 -102
sam2_mask.py
CHANGED
@@ -13,32 +13,20 @@ from sam2.sam2_image_predictor import SAM2ImagePredictor
|
|
13 |
def preprocess_image(image):
|
14 |
return image, gr.State([]), gr.State([]), image
|
15 |
|
16 |
-
def get_point(point_type, tracking_points, trackings_input_label,
|
17 |
-
|
18 |
-
tracking_points.
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
radius = int(fraction * min(w, h))
|
31 |
-
# Create a transparent layer to draw on
|
32 |
-
transparent_layer = np.zeros((h, w, 4), dtype=np.uint8)
|
33 |
-
for index, track in enumerate(tracking_points.value):
|
34 |
-
if trackings_input_label.value[index] == 1:
|
35 |
-
cv2.circle(transparent_layer, track, radius, (0, 255, 0, 255), -1)
|
36 |
-
else:
|
37 |
-
cv2.circle(transparent_layer, track, radius, (255, 0, 0, 255), -1)
|
38 |
-
# Convert the transparent layer back to an image
|
39 |
-
transparent_layer = Image.fromarray(transparent_layer, 'RGBA')
|
40 |
-
selected_point_map = Image.alpha_composite(transparent_background, transparent_layer)
|
41 |
-
return tracking_points, trackings_input_label, selected_point_map
|
42 |
|
43 |
# use bfloat16 for the entire notebook
|
44 |
torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__()
|
@@ -108,96 +96,62 @@ def show_masks(image, masks, scores, point_coords=None, box_coords=None, input_l
|
|
108 |
return combined_images, mask_images
|
109 |
|
110 |
@spaces.GPU()
|
111 |
-
def sam_process(
|
112 |
-
image
|
113 |
-
image = np.array(
|
114 |
-
# if checkpoint == "tiny":
|
115 |
-
# sam2_checkpoint = "./checkpoints/sam2_hiera_tiny.pt"
|
116 |
-
# model_cfg = "sam2_hiera_t.yaml"
|
117 |
-
# elif checkpoint == "small":
|
118 |
-
# sam2_checkpoint = "./checkpoints/sam2_hiera_small.pt"
|
119 |
-
# model_cfg = "sam2_hiera_s.yaml"
|
120 |
-
# elif checkpoint == "base-plus":
|
121 |
-
# sam2_checkpoint = "./checkpoints/sam2_hiera_base_plus.pt"
|
122 |
-
# model_cfg = "sam2_hiera_b+.yaml"
|
123 |
-
# elif checkpoint == "large":
|
124 |
-
# sam2_checkpoint = "./checkpoints/sam2_hiera_large.pt"
|
125 |
-
# model_cfg = "sam2_hiera_l.yaml"
|
126 |
predictor = SAM2ImagePredictor.from_pretrained("facebook/sam2.1-hiera-large")
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
sorted_ind = np.argsort(scores)[::-1]
|
139 |
-
masks = masks[sorted_ind]
|
140 |
-
scores = scores[sorted_ind]
|
141 |
-
logits = logits[sorted_ind]
|
142 |
-
print(masks.shape)
|
143 |
-
results, mask_results = show_masks(image, masks, scores, point_coords=input_point, input_labels=input_label, borders=True)
|
144 |
-
print(results)
|
145 |
-
return results[0], mask_results[0]
|
146 |
# sam2_model = build_sam2(model_cfg, sam2_checkpoint, device="cuda")
|
147 |
# predictor = SAM2ImagePredictor(sam2_model)
|
148 |
|
149 |
|
150 |
-
|
151 |
def create_sam2_tab():
|
152 |
-
|
153 |
tracking_points = gr.State([])
|
154 |
trackings_input_label = gr.State([])
|
|
|
155 |
with gr.Column():
|
156 |
gr.Markdown("# SAM2 Image Predictor")
|
157 |
-
gr.Markdown("
|
158 |
-
gr.
|
159 |
-
|
160 |
-
|
161 |
-
3. Switch to 'exclude' point type if you want to specify an area to avoid
|
162 |
-
4. Submit !
|
163 |
-
""")
|
164 |
with gr.Row():
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
)
|
172 |
-
with gr.Row():
|
173 |
-
point_type = gr.Radio(label="point type", choices=["include", "exclude"], value="include")
|
174 |
-
clear_points_btn = gr.Button("Clear Points")
|
175 |
-
# checkpoint = gr.Dropdown(label="Checkpoint", choices=["tiny", "small", "base-plus", "large"], value="tiny")
|
176 |
-
submit_btn = gr.Button("Submit")
|
177 |
-
with gr.Column():
|
178 |
-
output_result = gr.Image()
|
179 |
-
output_result_mask = gr.Image()
|
180 |
-
clear_points_btn.click(
|
181 |
-
fn=preprocess_image,
|
182 |
-
inputs=input_image,
|
183 |
-
outputs=[first_frame_path, tracking_points, trackings_input_label, points_map],
|
184 |
-
queue=False
|
185 |
-
)
|
186 |
points_map.upload(
|
187 |
-
|
188 |
-
inputs=
|
189 |
-
outputs=[
|
190 |
-
|
|
|
|
|
|
|
|
|
191 |
)
|
192 |
points_map.select(
|
193 |
-
|
194 |
-
inputs=[point_type, tracking_points, trackings_input_label,
|
195 |
-
outputs=[tracking_points, trackings_input_label, points_map]
|
196 |
-
queue=False
|
197 |
)
|
198 |
-
|
199 |
-
|
200 |
inputs=[input_image, tracking_points, trackings_input_label],
|
201 |
-
outputs=
|
202 |
)
|
203 |
-
|
|
|
|
13 |
def preprocess_image(image):
|
14 |
return image, gr.State([]), gr.State([]), image
|
15 |
|
16 |
+
def get_point(point_type, tracking_points, trackings_input_label, original_image, evt):
|
17 |
+
x, y = evt.index
|
18 |
+
tracking_points.append((x, y))
|
19 |
+
trackings_input_label.append(1 if point_type == "include" else 0)
|
20 |
+
|
21 |
+
# Redraw all points on original image
|
22 |
+
w, h = original_image.size
|
23 |
+
radius = int(min(w, h) * 0.02)
|
24 |
+
img = original_image.convert("RGBA")
|
25 |
+
draw = ImageDraw.Draw(img)
|
26 |
+
for i, (cx, cy) in enumerate(tracking_points):
|
27 |
+
color = (0, 255, 0, 255) if trackings_input_label[i] == 1 else (255, 0, 0, 255)
|
28 |
+
draw.ellipse([cx-radius, cy-radius, cx+radius, cy+radius], fill=color)
|
29 |
+
return tracking_points, trackings_input_label, img
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
# use bfloat16 for the entire notebook
|
32 |
torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__()
|
|
|
96 |
return combined_images, mask_images
|
97 |
|
98 |
@spaces.GPU()
|
99 |
+
def sam_process(original_image, points, labels):
|
100 |
+
# Convert image to numpy array for SAM2 processing
|
101 |
+
image = np.array(original_image)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
predictor = SAM2ImagePredictor.from_pretrained("facebook/sam2.1-hiera-large")
|
103 |
+
predictor.set_image(image)
|
104 |
+
input_point = np.array(points)
|
105 |
+
input_label = np.array(labels)
|
106 |
+
masks, scores, _ = predictor.predict(input_point, input_label, multimask_output=False)
|
107 |
+
sorted_indices = np.argsort(scores)[::-1]
|
108 |
+
masks = masks[sorted_indices]
|
109 |
+
|
110 |
+
# Generate mask image
|
111 |
+
mask = masks[0] * 255
|
112 |
+
mask_image = Image.fromarray(mask.astype(np.uint8))
|
113 |
+
return mask_image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
# sam2_model = build_sam2(model_cfg, sam2_checkpoint, device="cuda")
|
115 |
# predictor = SAM2ImagePredictor(sam2_model)
|
116 |
|
117 |
|
|
|
118 |
def create_sam2_tab():
|
119 |
+
first_frame = gr.State() # Tracks original image
|
120 |
tracking_points = gr.State([])
|
121 |
trackings_input_label = gr.State([])
|
122 |
+
|
123 |
with gr.Column():
|
124 |
gr.Markdown("# SAM2 Image Predictor")
|
125 |
+
gr.Markdown("1. Upload your image\n2. Click points to mask\n3. Submit")
|
126 |
+
points_map = gr.Image(label="Points Map", type="pil", interactive=True)
|
127 |
+
input_image = gr.Image(type="pil", visible=False) # Original image
|
128 |
+
|
|
|
|
|
|
|
129 |
with gr.Row():
|
130 |
+
point_type = gr.Radio(["include", "exclude"], value="include", label="Point Type")
|
131 |
+
clear_button = gr.Button("Clear Points")
|
132 |
+
submit_button = gr.Button("Submit")
|
133 |
+
output_image = gr.Image("Segmented Output")
|
134 |
+
|
135 |
+
# Event handlers
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
points_map.upload(
|
137 |
+
lambda img: (img, img, [], []),
|
138 |
+
inputs=points_map,
|
139 |
+
outputs=[input_image, first_frame, tracking_points, trackings_input_label]
|
140 |
+
)
|
141 |
+
clear_button.click(
|
142 |
+
lambda img: ([], [], img),
|
143 |
+
inputs=first_frame,
|
144 |
+
outputs=[tracking_points, trackings_input_label, points_map]
|
145 |
)
|
146 |
points_map.select(
|
147 |
+
get_point,
|
148 |
+
inputs=[point_type, tracking_points, trackings_input_label, first_frame],
|
149 |
+
outputs=[tracking_points, trackings_input_label, points_map]
|
|
|
150 |
)
|
151 |
+
submit_button.click(
|
152 |
+
sam_process,
|
153 |
inputs=[input_image, tracking_points, trackings_input_label],
|
154 |
+
outputs=output_image
|
155 |
)
|
156 |
+
|
157 |
+
return input_image, points_map, output_image
|