import spaces import gradio as gr import torch from diffusers import AutoencoderKL, TCDScheduler from diffusers.models.model_loading_utils import load_state_dict from gradio_imageslider import ImageSlider from huggingface_hub import hf_hub_download from controlnet_union import ControlNetModel_Union from pipeline_fill_sd_xl import StableDiffusionXLFillPipeline from PIL import Image, ImageDraw import numpy as np MODELS = { "RealVisXL V5.0 Lightning": "SG161222/RealVisXL_V5.0_Lightning", "Lustify Lightning": "GraydientPlatformAPI/lustify-lightning", "Juggernaut XL Lightning": "RunDiffusion/Juggernaut-XL-Lightning", "Juggernaut-XL-V9-GE-RDPhoto2": "AiWise/Juggernaut-XL-V9-GE-RDPhoto2-Lightning_4S", "SatPony-Lightning": "John6666/satpony-lightning-v2-sdxl" } config_file = hf_hub_download( "xinsir/controlnet-union-sdxl-1.0", filename="config_promax.json", ) config = ControlNetModel_Union.load_config(config_file) controlnet_model = ControlNetModel_Union.from_config(config) model_file = hf_hub_download( "xinsir/controlnet-union-sdxl-1.0", filename="diffusion_pytorch_model_promax.safetensors", ) state_dict = load_state_dict(model_file) model, _, _, _, _ = ControlNetModel_Union._load_pretrained_model( controlnet_model, state_dict, model_file, "xinsir/controlnet-union-sdxl-1.0" ) model.to(device="cuda", dtype=torch.float16) vae = AutoencoderKL.from_pretrained( "madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16 ).to("cuda") pipe = StableDiffusionXLFillPipeline.from_pretrained( "SG161222/RealVisXL_V5.0_Lightning", torch_dtype=torch.float16, vae=vae, controlnet=model, variant="fp16", ) pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config) pipe.to("cuda") print(pipe) def load_default_pipeline(): global pipe pipe = StableDiffusionXLFillPipeline.from_pretrained( "SG161222/RealVisXL_V5.0_Lightning", torch_dtype=torch.float16, vae=vae, controlnet=model, ).to("cuda") return gr.update(value="Default pipeline loaded!") @spaces.GPU(duration=12) def fill_image(prompt, image, model_selection, paste_back): print(f"Received image: {image}") if image is None: yield None, None return ( prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds, ) = pipe.encode_prompt(prompt, "cuda", True) source = image["background"] mask = image["layers"][0] alpha_channel = mask.split()[3] binary_mask = alpha_channel.point(lambda p: p > 0 and 255) cnet_image = source.copy() cnet_image.paste(0, (0, 0), binary_mask) for image in pipe( prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, image=cnet_image, ): yield image, cnet_image print(f"{model_selection=}") print(f"{paste_back=}") if paste_back: image = image.convert("RGBA") cnet_image.paste(image, (0, 0), binary_mask) else: cnet_image = image yield source, cnet_image def clear_result(): return gr.update(value=None) def can_expand(source_width, source_height, target_width, target_height, alignment): if alignment in ("Left", "Right") and source_width >= target_width: return False if alignment in ("Top", "Bottom") and source_height >= target_height: return False return True def prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom): target_size = (width, height) scale_factor = min(target_size[0] / image.width, target_size[1] / image.height) new_width = int(image.width * scale_factor) new_height = int(image.height * scale_factor) source = image.resize((new_width, new_height), Image.LANCZOS) if resize_option == "Full": resize_percentage = 100 elif resize_option == "80%": resize_percentage = 80 elif resize_option == "50%": resize_percentage = 50 elif resize_option == "33%": resize_percentage = 33 elif resize_option == "25%": resize_percentage = 25 else: # Custom resize_percentage = custom_resize_percentage resize_factor = resize_percentage / 100 new_width = int(source.width * resize_factor) new_height = int(source.height * resize_factor) new_width = max(new_width, 64) new_height = max(new_height, 64) source = source.resize((new_width, new_height), Image.LANCZOS) overlap_x = int(new_width * (overlap_percentage / 100)) overlap_y = int(new_height * (overlap_percentage / 100)) overlap_x = max(overlap_x, 1) overlap_y = max(overlap_y, 1) if alignment == "Middle": margin_x = (target_size[0] - new_width) // 2 margin_y = (target_size[1] - new_height) // 2 elif alignment == "Left": margin_x = 0 margin_y = (target_size[1] - new_height) // 2 elif alignment == "Right": margin_x = target_size[0] - new_width margin_y = (target_size[1] - new_height) // 2 elif alignment == "Top": margin_x = (target_size[0] - new_width) // 2 margin_y = 0 elif alignment == "Bottom": margin_x = (target_size[0] - new_width) // 2 margin_y = target_size[1] - new_height margin_x = max(0, min(margin_x, target_size[0] - new_width)) margin_y = max(0, min(margin_y, target_size[1] - new_height)) background = Image.new('RGB', target_size, (255, 255, 255)) background.paste(source, (margin_x, margin_y)) mask = Image.new('L', target_size, 255) mask_draw = ImageDraw.Draw(mask) white_gaps_patch = 2 left_overlap = margin_x + overlap_x if overlap_left else margin_x + white_gaps_patch right_overlap = margin_x + new_width - overlap_x if overlap_right else margin_x + new_width - white_gaps_patch top_overlap = margin_y + overlap_y if overlap_top else margin_y + white_gaps_patch bottom_overlap = margin_y + new_height - overlap_y if overlap_bottom else margin_y + new_height - white_gaps_patch if alignment == "Left": left_overlap = margin_x + overlap_x if overlap_left else margin_x elif alignment == "Right": right_overlap = margin_x + new_width - overlap_x if overlap_right else margin_x + new_width elif alignment == "Top": top_overlap = margin_y + overlap_y if overlap_top else margin_y elif alignment == "Bottom": botttom_overlap = margin = margin = margin = margin_y + new_height - overlap_y if overlap_bottom else margin_y + new_height mask_draw.rectangle([ (left_overlap, top_overlap), (right_overlap, bottom_overlap) ], fill=0) return background, mask def preview_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom): background, mask = prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom) preview = background.copy().convert('RGBA') red_overlay = Image.new('RGBA', background.size, (255, 0, 0, 64)) red_mask = Image.new('RGBA', background.size, (0, 0, 0, 0)) red_mask.paste(red_overlay, (0, 0), mask) preview = Image.alpha_composite(preview, red_mask) return preview @spaces.GPU(duration=12) def inpaint(prompt, image, inpaint_model, paste_back): global pipe if pipe.config.model_name != MODELS[model_name]: pipe = StableDiffusionXLFillPipeline.from_pretrained( MODELS[model_name], torch_dtype=torch.float16, vae=vae, controlnet=model, ).to("cuda") print(f"Loaded new SDXL model: {pipe.config.model_name}") mask = Image.fromarray(image["mask"]).convert("L") image = Image.fromarray(image["image"]) inpaint_final_prompt = f"score_9, score_8_up, score_7_up, {prompt}" result = pipe(prompt=inpaint_final_prompt, image=image, mask_image=mask).images[0] if paste_back: result.paste(image, (0, 0), Image.fromarray(255 - np.array(mask))) return result @spaces.GPU(duration=12) def outpaint(image, width, height, overlap_percentage, num_inference_steps, resize_option, custom_resize_percentage, prompt_input, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom): background, mask = prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom) if not can_expand(background.width, background.height, width, height, alignment): alignment = "Middle" cnet_image = background.copy() cnet_image.paste(0, (0, 0), mask) final_prompt = f"score_9, score_8_up, score_7_up, {prompt_input} , high quality, 4k" print(f"Outpainting using SDXL model: {pipe.config.model_name}") ( prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds, ) = pipe.encode_prompt(final_prompt, "cuda", True) for image in pipe( prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, image=cnet_image, num_inference_steps=num_inference_steps ): yield cnet_image, image image = image.convert("RGBA") cnet_image.paste(image, (0, 0), mask) yield background, cnet_image @spaces.GPU(duration=12) def infer(image, width, height, overlap_percentage, num_inference_steps, resize_option, custom_resize_percentage, prompt_input, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom): background, mask = prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom) if not can_expand(background.width, background.height, width, height, alignment): alignment = "Middle" cnet_image = background.copy() cnet_image.paste(0, (0, 0), mask) final_prompt = f"{prompt_input} , high quality, 4k" ( prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds, ) = pipe.encode_prompt(final_prompt, "cuda", True) for image in pipe( prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, image=cnet_image, num_inference_steps=num_inference_steps ): yield cnet_image, image image = image.convert("RGBA") cnet_image.paste(image, (0, 0), mask) yield background, cnet_image def use_output_as_input(output_image): return gr.update(value=output_image[1]) def preload_presets(target_ratio, ui_width, ui_height): if target_ratio == "9:16": changed_width = 720 changed_height = 1280 return changed_width, changed_height, gr.update() elif target_ratio == "2:3": changed_width = 1024 changed_height = 1536 return changed_width, changed_height, gr.update() elif target_ratio == "16:9": changed_width = 1280 changed_height = 720 return changed_width, changed_height, gr.update() elif target_ratio == "1:1": changed_width = 1024 changed_height = 1024 return changed_width, changed_height, gr.update() elif target_ratio == "Custom": return ui_width, ui_height, gr.update(open=True) else: return ui_width, ui_height, gr.update() def select_the_right_preset(user_width, user_height): if user_width == 720 and user_height == 1280: return "9:16" elif user_width == 1024 and user_height == 1536: return "2:3" elif user_width == 1280 and user_height == 720: return "16:9" elif user_width == 1024 and user_height == 1024: return "1:1" else: return "Custom" def toggle_custom_resize_slider(resize_option): return gr.update(visible=(resize_option == "Custom")) def update_history(new_image, history): if history is None: history = [] history.insert(0, new_image) return history def clear_cache(): global pipe pipe = None torch.cuda.empty_cache() return gr.update(value="Cache cleared!") css = """ .nulgradio-container { width: 86vw !important; } .nulcontain { overflow-y: scroll !important; padding: 10px 40px !important; } div#component-17 { height: auto !important; } """ title = """