import spaces import gradio as gr import os import torch import numpy as np import cv2 import huggingface_hub import matplotlib.pyplot as plt from PIL import Image from sam2.build_sam import build_sam2 from sam2.sam2_image_predictor import SAM2ImagePredictor # # Remove all CUDA-specific configurations # torch.autocast(device_type="cpu", dtype=torch.float32).__enter__() def preprocess_image(image): return image, gr.State([]), gr.State([]), image def get_point(point_type, tracking_points, trackings_input_label, first_frame_path, evt: gr.SelectData): print(f"You selected {evt.value} at {evt.index} from {evt.target}") tracking_points.value.append(evt.index) print(f"TRACKING POINT: {tracking_points.value}") if point_type == "include": trackings_input_label.value.append(1) elif point_type == "exclude": trackings_input_label.value.append(0) print(f"TRACKING INPUT LABEL: {trackings_input_label.value}") transparent_background = Image.open(first_frame_path).convert('RGBA') w, h = transparent_background.size fraction = 0.02 radius = int(fraction * min(w, h)) transparent_layer = np.zeros((h, w, 4), dtype=np.uint8) for index, track in enumerate(tracking_points.value): if trackings_input_label.value[index] == 1: cv2.circle(transparent_layer, track, radius, (0, 255, 0, 255), -1) else: cv2.circle(transparent_layer, track, radius, (255, 0, 0, 255), -1) transparent_layer = Image.fromarray(transparent_layer, 'RGBA') selected_point_map = Image.alpha_composite(transparent_background, transparent_layer) return tracking_points, trackings_input_label, selected_point_map def show_mask(mask, ax, random_color=False, borders=True): if random_color: color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0) else: color = np.array([30/255, 144/255, 255/255, 0.6]) h, w = mask.shape[-2:] mask = mask.astype(np.uint8) mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1) if borders: contours, _= cv2.findContours(mask,cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) contours = [cv2.approxPolyDP(contour, epsilon=0.01, closed=True) for contour in contours] mask_image = cv2.drawContours(mask_image, contours, -1, (1, 1, 1, 0.5), thickness=2) ax.imshow(mask_image) def show_points(coords, labels, ax, marker_size=200): pos_points = coords[labels==1] neg_points = coords[labels==0] ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white', linewidth=1.25) ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white', linewidth=1.25) def show_box(box, ax): x0, y0 = box[0], box[1] w, h = box[2] - box[0], box[3] - box[1] ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0, 0, 0, 0), lw=2)) def show_masks(image, masks, scores, point_coords=None, box_coords=None, input_labels=None, borders=True): combined_images = [] mask_images = [] for i, (mask, score) in enumerate(zip(masks, scores)): plt.figure(figsize=(10, 10)) plt.imshow(image) show_mask(mask, plt.gca(), borders=borders) plt.axis('off') combined_filename = f"combined_image_{i+1}.jpg" plt.savefig(combined_filename, format='jpg', bbox_inches='tight') combined_images.append(combined_filename) plt.close() mask_image = np.zeros_like(image, dtype=np.uint8) mask_layer = (mask > 0).astype(np.uint8) * 255 for c in range(3): mask_image[:, :, c] = mask_layer mask_filename = f"mask_image_{i+1}.png" Image.fromarray(mask_image).save(mask_filename) mask_images.append(mask_filename) return combined_images, mask_images def expand_contract_mask(mask, px, expand=True): kernel = np.ones((px, px), np.uint8) if expand: return cv2.dilate(mask, kernel, iterations=1) else: return cv2.erode(mask, kernel, iterations=1) def feather_mask(mask, feather_size=10): feathered_mask = mask.copy() Feathered_region = mask > 0 Feathered_region = cv2.dilate(Feathered_region.astype(np.uint8), np.ones((feather_size, feather_size), np.uint8), iterations=1) Feathered_region = Feathered_region & (~mask.astype(bool)) for i in range(1, feather_size + 1): weight = i / (feather_size + 1) feathered_mask[Feathered_region] = feathered_mask[Feathered_region] * (1 - weight) + weight return feathered_mask def process_mask(mask, expand_contract_px, expand, feathering_enabled, feather_size): if expand_contract_px > 0: mask = expand_contract_mask(mask, expand_contract_px, expand) if feathering_enabled: mask = feather_mask(mask, feather_size) return mask @spaces.GPU() def sam_process(input_image, checkpoint, tracking_points, trackings_input_label, expand_contract_px, expand, feathering_enabled, feather_size): image = Image.open(input_image) image = np.array(image.convert("RGB")) sam21_hfmap = { "tiny": "facebook/sam2.1-hiera-tiny", "small": "facebook/sam2.1-hiera-small", "base-plus": "facebook/sam2.1-hiera-base-plus", "large": "facebook/sam2.1-hiera-large", } # sam2_checkpoint, model_cfg = checkpoint_map[checkpoint] # Use CPU for both model and computations # sam2_model = build_sam2(model_cfg, sam2_checkpoint, device="cpu") predictor = SAM2ImagePredictor.from_pretrained(sam21_hfmap[checkpoint], device="cuda") # predictor = SAM2ImagePredictor(sam2_model) predictor.set_image(image) input_point = np.array(tracking_points.value) input_label = np.array(trackings_input_label.value) masks, scores, logits = predictor.predict( point_coords=input_point, point_labels=input_label, multimask_output=False, ) sorted_ind = np.argsort(scores)[::-1] masks = masks[sorted_ind] scores = scores[sorted_ind] processed_masks = [] for mask in masks: processed_mask = process_mask(mask, expand_contract_px, expand, feathering_enabled, feather_size) processed_masks.append(processed_mask) results, mask_results = show_masks(image, processed_masks, scores, point_coords=input_point, input_labels=input_label, borders=True) return results[0], mask_results[0] with gr.Blocks() as demo: first_frame_path = gr.State() tracking_points = gr.State([]) trackings_input_label = gr.State([]) with gr.Column(): gr.Markdown("# SAM2 Image Predictor / Masking Assistant") with gr.Row(): with gr.Column(): input_image = gr.Image(label="input image", interactive=False, type="filepath", visible=False) points_map = gr.Image(label="points map", type="filepath", interactive=True) with gr.Row(): point_type = gr.Radio(label="point type", choices=["include", "exclude"], value="include") clear_points_btn = gr.Button("Clear Points") checkpoint = gr.Dropdown(label="Checkpoint", choices=["tiny", "small", "base-plus", "large"], value="base-plus") with gr.Row(): expand_contract_px = gr.Slider(minimum=0, maximum=50, value=0, label="Expand/Contract (pixels)") expand = gr.Radio(["Expand", "Contract"], value="Expand", label="Action") with gr.Row(): feathering_enabled = gr.Checkbox(value=False, label="Enable Feathering") feather_size = gr.Slider(minimum=1, maximum=50, value=10, label="Feathering Size", visible=False) submit_btn = gr.Button("Submit") with gr.Column(): output_result = gr.Image() output_result_mask = gr.Image() clear_points_btn.click( fn=preprocess_image, inputs=input_image, outputs=[first_frame_path, tracking_points, trackings_input_label, points_map], queue=False ) points_map.upload( fn=preprocess_image, inputs=[points_map], outputs=[first_frame_path, tracking_points, trackings_input_label, input_image], queue=False ) points_map.select( fn=get_point, inputs=[point_type, tracking_points, trackings_input_label, first_frame_path], outputs=[tracking_points, trackings_input_label, points_map], queue=False ) submit_btn.click( fn=sam_process, inputs=[input_image, checkpoint, tracking_points, trackings_input_label, expand_contract_px, expand, feathering_enabled, feather_size], outputs=[output_result, output_result_mask] ) feathering_enabled.change( fn=lambda enabled: gr.update(visible=enabled), inputs=[feathering_enabled], outputs=[feather_size] ) demo.launch(show_error=True)