Spaces:
Running
on
L4
Running
on
L4
Upload Chatbot WS files
Browse files- .gitattributes +2 -0
- Chatbots.pdf +3 -0
- DeepSeekR1.pdf +3 -0
- app.py +1114 -0
- requirements.txt +16 -0
.gitattributes
CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
Chatbots.pdf filter=lfs diff=lfs merge=lfs -text
|
37 |
+
DeepSeekR1.pdf filter=lfs diff=lfs merge=lfs -text
|
Chatbots.pdf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e40deb492c8fa092846fa4970a48522900b4fb17e47f4f0bbc5b725fe4278f58
|
3 |
+
size 1644160
|
DeepSeekR1.pdf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2a73a44c4adc33d64b30df00f55074e4a28d710250002a67b07ca06729f57575
|
3 |
+
size 656741
|
app.py
ADDED
@@ -0,0 +1,1114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import os
|
3 |
+
import re
|
4 |
+
import torch
|
5 |
+
import numpy as np
|
6 |
+
from sentence_transformers import SentenceTransformer, util
|
7 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
8 |
+
from langchain_community.document_loaders import PyPDFLoader
|
9 |
+
from langchain.text_splitter import CharacterTextSplitter
|
10 |
+
from langchain_community.vectorstores import Chroma
|
11 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
12 |
+
# Import for setting environment variables
|
13 |
+
import os
|
14 |
+
# Import for specific HTTP backend config
|
15 |
+
from huggingface_hub import HfFolder
|
16 |
+
|
17 |
+
import hashlib
|
18 |
+
|
19 |
+
|
20 |
+
# Set environment variables for longer timeouts
|
21 |
+
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
|
22 |
+
os.environ["HF_HUB_DISABLE_EXPERIMENTAL_WARNING"] = "1"
|
23 |
+
os.environ["HF_HUB_DISABLE_PROGRESS_BARS"] = "0"
|
24 |
+
|
25 |
+
# Ensure NumPy 2.0 compatibility
|
26 |
+
np.float_ = np.float64
|
27 |
+
|
28 |
+
# Add these session state variables in the Streamlit app initialization section
|
29 |
+
if "question_history" not in st.session_state:
|
30 |
+
st.session_state.question_history = []
|
31 |
+
|
32 |
+
if "answer_history" not in st.session_state:
|
33 |
+
st.session_state.answer_history = []
|
34 |
+
|
35 |
+
if "question_hash_set" not in st.session_state:
|
36 |
+
st.session_state.question_hash_set = set()
|
37 |
+
|
38 |
+
# Streamlit Page Config
|
39 |
+
st.set_page_config(page_title="π Educational PDF Chatbot", layout="wide")
|
40 |
+
|
41 |
+
# Hugging Face API Details
|
42 |
+
HF_API_KEY = st.secrets.get("HF_API_KEY", os.getenv("HF_API_KEY"))
|
43 |
+
|
44 |
+
# Set token if we have it
|
45 |
+
if HF_API_KEY:
|
46 |
+
HfFolder.save_token(HF_API_KEY)
|
47 |
+
|
48 |
+
# Model Selection - Updated to use the 8B model
|
49 |
+
MODEL_NAME = "Noorhan/mistral-8b-4bit"
|
50 |
+
|
51 |
+
if not HF_API_KEY:
|
52 |
+
st.error("Hugging Face API key is missing! Please set HF_API_KEY in Streamlit secrets or environment variables.")
|
53 |
+
raise ValueError("Hugging Face API key is missing!")
|
54 |
+
|
55 |
+
@st.cache_resource
|
56 |
+
def load_quantized_model():
|
57 |
+
"""Loads a quantized version of the model."""
|
58 |
+
try:
|
59 |
+
st.info(f"Loading model {MODEL_NAME}, this may take a few minutes...")
|
60 |
+
|
61 |
+
# Configure quantization
|
62 |
+
quantization_config = BitsAndBytesConfig(
|
63 |
+
load_in_4bit=True,
|
64 |
+
bnb_4bit_compute_dtype=torch.float16,
|
65 |
+
bnb_4bit_quant_type="nf4",
|
66 |
+
bnb_4bit_use_double_quant=True,
|
67 |
+
)
|
68 |
+
|
69 |
+
# Load tokenizer
|
70 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
71 |
+
MODEL_NAME,
|
72 |
+
token=HF_API_KEY,
|
73 |
+
trust_remote_code=True,
|
74 |
+
)
|
75 |
+
|
76 |
+
# Load model
|
77 |
+
model = AutoModelForCausalLM.from_pretrained(
|
78 |
+
MODEL_NAME,
|
79 |
+
quantization_config=quantization_config,
|
80 |
+
device_map="auto",
|
81 |
+
torch_dtype=torch.float16,
|
82 |
+
token=HF_API_KEY,
|
83 |
+
)
|
84 |
+
|
85 |
+
st.success(f"Model {MODEL_NAME} loaded successfully!")
|
86 |
+
return model, tokenizer
|
87 |
+
except Exception as e:
|
88 |
+
st.error(f"Error loading model: {str(e)}")
|
89 |
+
return None, None
|
90 |
+
|
91 |
+
# Display loading message first
|
92 |
+
if "model_loaded" not in st.session_state:
|
93 |
+
st.session_state.model_loaded = False
|
94 |
+
st.info("Initializing model... This may take a few minutes on first load.")
|
95 |
+
|
96 |
+
# Try to load the model
|
97 |
+
model, tokenizer = None, None
|
98 |
+
if not st.session_state.model_loaded:
|
99 |
+
with st.spinner("Loading model..."):
|
100 |
+
model, tokenizer = load_quantized_model()
|
101 |
+
if model is not None:
|
102 |
+
st.session_state.model_loaded = True
|
103 |
+
else:
|
104 |
+
# Use cached model if already loaded
|
105 |
+
model, tokenizer = load_quantized_model()
|
106 |
+
|
107 |
+
# Load Sentence Transformer model for similarity checking
|
108 |
+
# Load Sentence Transformer model for similarity checking
|
109 |
+
@st.cache_resource
|
110 |
+
def load_sentence_model():
|
111 |
+
"""Loads sentence transformer model for text similarity with improved error handling."""
|
112 |
+
with st.spinner("Loading similarity model..."):
|
113 |
+
try:
|
114 |
+
# First ensure the model is explicitly downloaded with the HF token
|
115 |
+
from huggingface_hub import hf_hub_download
|
116 |
+
import os
|
117 |
+
|
118 |
+
model_name = "sentence-transformers/all-MiniLM-L6-v2"
|
119 |
+
|
120 |
+
# Create cache directory if it doesn't exist
|
121 |
+
cache_dir = os.path.join(os.path.expanduser("~"), ".cache", "huggingface")
|
122 |
+
os.makedirs(cache_dir, exist_ok=True)
|
123 |
+
|
124 |
+
# Try to use the model
|
125 |
+
st.info(f"Attempting to load sentence transformer model: {model_name}")
|
126 |
+
return SentenceTransformer(model_name, token=HF_API_KEY)
|
127 |
+
|
128 |
+
except (FileNotFoundError, ConnectionError, OSError) as e:
|
129 |
+
st.warning(f"Error loading the primary model: {str(e)}")
|
130 |
+
st.info("Attempting to use a fallback model...")
|
131 |
+
|
132 |
+
try:
|
133 |
+
# Try a different model as fallback
|
134 |
+
fallback_model = "all-mpnet-base-v2"
|
135 |
+
return SentenceTransformer(f"sentence-transformers/{fallback_model}", token=HF_API_KEY)
|
136 |
+
except Exception as e2:
|
137 |
+
st.error(f"Failed to load fallback model: {str(e2)}")
|
138 |
+
|
139 |
+
# Last resort - create a simple embedding model
|
140 |
+
st.warning("Using a simplified embedding approach.")
|
141 |
+
|
142 |
+
# Define a simple class that mimics the SentenceTransformer interface
|
143 |
+
class SimpleEmbedder:
|
144 |
+
def encode(self, texts, convert_to_tensor=True):
|
145 |
+
"""Simple word-based encoding"""
|
146 |
+
import numpy as np
|
147 |
+
import torch
|
148 |
+
|
149 |
+
if isinstance(texts, str):
|
150 |
+
texts = [texts]
|
151 |
+
|
152 |
+
# Create simple embeddings (word count vectors)
|
153 |
+
embeddings = []
|
154 |
+
for text in texts:
|
155 |
+
# Simple word frequency vector (very basic!)
|
156 |
+
words = set(text.lower().split())
|
157 |
+
embedding = np.zeros(384) # Match MiniLM dimension
|
158 |
+
|
159 |
+
# Use character positions for a deterministic but simple embedding
|
160 |
+
for i, word in enumerate(words):
|
161 |
+
for j, char in enumerate(word):
|
162 |
+
if i < 384:
|
163 |
+
embedding[i] = ord(char) / 255.0
|
164 |
+
|
165 |
+
embeddings.append(embedding)
|
166 |
+
|
167 |
+
if convert_to_tensor:
|
168 |
+
return torch.tensor(embeddings)
|
169 |
+
return np.array(embeddings)
|
170 |
+
|
171 |
+
return SimpleEmbedder()
|
172 |
+
sentence_model = load_sentence_model()
|
173 |
+
|
174 |
+
# Define PDF Files to Process
|
175 |
+
PDF_FILES = ["DeepSeekR1.pdf", "Chatbots.pdf"]
|
176 |
+
|
177 |
+
@st.cache_resource
|
178 |
+
def load_and_index_pdfs():
|
179 |
+
"""Load and process multiple PDFs into a single vector store with source tracking and improved error handling."""
|
180 |
+
try:
|
181 |
+
with st.spinner("Processing PDF documents..."):
|
182 |
+
documents = []
|
183 |
+
for pdf in PDF_FILES:
|
184 |
+
if os.path.exists(pdf):
|
185 |
+
try:
|
186 |
+
loader = PyPDFLoader(pdf)
|
187 |
+
docs = loader.load()
|
188 |
+
|
189 |
+
for doc in docs:
|
190 |
+
doc.metadata["source"] = pdf
|
191 |
+
if "page" in doc.metadata:
|
192 |
+
doc.metadata["source"] = f"{pdf} (Page {doc.metadata['page']})"
|
193 |
+
|
194 |
+
documents.extend(docs)
|
195 |
+
except Exception as pdf_error:
|
196 |
+
st.error(f"Error loading {pdf}: {str(pdf_error)}")
|
197 |
+
else:
|
198 |
+
st.error(f"Error: {pdf} not found!")
|
199 |
+
|
200 |
+
if not documents:
|
201 |
+
st.error("No documents were successfully loaded!")
|
202 |
+
return None
|
203 |
+
|
204 |
+
# Split documents into chunks with error handling
|
205 |
+
try:
|
206 |
+
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
207 |
+
splits = text_splitter.split_documents(documents)
|
208 |
+
except Exception as split_error:
|
209 |
+
st.error(f"Error splitting documents: {str(split_error)}")
|
210 |
+
# Fallback to simpler splitting
|
211 |
+
splits = documents
|
212 |
+
|
213 |
+
# Create embeddings with fallback options
|
214 |
+
try:
|
215 |
+
# Try the primary embedding model
|
216 |
+
st.info("Creating document embeddings...")
|
217 |
+
embeddings = HuggingFaceEmbeddings(
|
218 |
+
model_name="sentence-transformers/all-MiniLM-L6-v2",
|
219 |
+
model_kwargs={"token": HF_API_KEY}
|
220 |
+
)
|
221 |
+
|
222 |
+
# Test the embeddings
|
223 |
+
test_embed = embeddings.embed_query("test")
|
224 |
+
if not test_embed or len(test_embed) == 0:
|
225 |
+
raise ValueError("Embedding model returned empty embeddings")
|
226 |
+
|
227 |
+
except Exception as embed_error:
|
228 |
+
st.warning(f"Primary embedding model failed: {str(embed_error)}")
|
229 |
+
st.info("Trying alternative embedding model...")
|
230 |
+
|
231 |
+
try:
|
232 |
+
# Try a different model as fallback
|
233 |
+
embeddings = HuggingFaceEmbeddings(
|
234 |
+
model_name="sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2",
|
235 |
+
model_kwargs={"token": HF_API_KEY}
|
236 |
+
)
|
237 |
+
except Exception as embed_error2:
|
238 |
+
st.error(f"Fallback embedding model also failed: {str(embed_error2)}")
|
239 |
+
st.warning("Using a basic embedding model. Search results may be less accurate.")
|
240 |
+
|
241 |
+
# Define a custom embedding function as last resort
|
242 |
+
from langchain.embeddings.base import Embeddings
|
243 |
+
import numpy as np
|
244 |
+
|
245 |
+
class BasicEmbeddings(Embeddings):
|
246 |
+
def embed_documents(self, texts):
|
247 |
+
"""Create simple embeddings for a list of texts."""
|
248 |
+
return [self._basic_embed(text) for text in texts]
|
249 |
+
|
250 |
+
def embed_query(self, text):
|
251 |
+
"""Create simple embeddings for a query."""
|
252 |
+
return self._basic_embed(text)
|
253 |
+
|
254 |
+
def _basic_embed(self, text):
|
255 |
+
"""Create a simple embedding based on word frequencies."""
|
256 |
+
# Create a basic word-frequency based embedding
|
257 |
+
unique_words = set(text.lower().split())
|
258 |
+
embedding = np.zeros(384) # Match MiniLM dimension
|
259 |
+
|
260 |
+
for i, word in enumerate(unique_words):
|
261 |
+
hash_val = sum(ord(c) for c in word) % 384
|
262 |
+
embedding[hash_val] += 1
|
263 |
+
|
264 |
+
# Normalize the embedding
|
265 |
+
norm = np.linalg.norm(embedding)
|
266 |
+
if norm > 0:
|
267 |
+
embedding = embedding / norm
|
268 |
+
|
269 |
+
return embedding.tolist()
|
270 |
+
|
271 |
+
embeddings = BasicEmbeddings()
|
272 |
+
|
273 |
+
try:
|
274 |
+
# Create vectorstore with error handling
|
275 |
+
vectorstore = Chroma.from_documents(
|
276 |
+
splits,
|
277 |
+
embedding=embeddings,
|
278 |
+
persist_directory="./chroma_db"
|
279 |
+
)
|
280 |
+
|
281 |
+
return vectorstore.as_retriever(search_kwargs={"k": 5})
|
282 |
+
|
283 |
+
except Exception as vector_error:
|
284 |
+
st.error(f"Error creating vector store: {str(vector_error)}")
|
285 |
+
return None
|
286 |
+
|
287 |
+
except Exception as e:
|
288 |
+
st.error(f"Error processing PDFs: {str(e)}")
|
289 |
+
return None
|
290 |
+
retriever = load_and_index_pdfs()
|
291 |
+
|
292 |
+
def check_document_relevance(query, documents, min_similarity=0.2):
|
293 |
+
"""Check if retrieved documents are truly relevant using semantic similarity with improved error handling."""
|
294 |
+
if not documents:
|
295 |
+
return [], []
|
296 |
+
|
297 |
+
try:
|
298 |
+
# Encode query
|
299 |
+
query_embedding = sentence_model.encode(query, convert_to_tensor=True)
|
300 |
+
|
301 |
+
relevant_docs = []
|
302 |
+
relevant_scores = []
|
303 |
+
|
304 |
+
for doc in documents:
|
305 |
+
try:
|
306 |
+
# Calculate similarity between query and document
|
307 |
+
doc_embedding = sentence_model.encode(doc.page_content, convert_to_tensor=True)
|
308 |
+
|
309 |
+
# Handle different return types from different models
|
310 |
+
if hasattr(util, "pytorch_cos_sim"):
|
311 |
+
similarity = util.pytorch_cos_sim(query_embedding, doc_embedding).item()
|
312 |
+
else:
|
313 |
+
# Fallback to manual cosine similarity calculation
|
314 |
+
import torch.nn.functional as F
|
315 |
+
import torch
|
316 |
+
|
317 |
+
if not isinstance(query_embedding, torch.Tensor):
|
318 |
+
query_embedding = torch.tensor(query_embedding)
|
319 |
+
if not isinstance(doc_embedding, torch.Tensor):
|
320 |
+
doc_embedding = torch.tensor(doc_embedding)
|
321 |
+
|
322 |
+
# Ensure embeddings are properly shaped
|
323 |
+
if len(query_embedding.shape) == 1:
|
324 |
+
query_embedding = query_embedding.unsqueeze(0)
|
325 |
+
if len(doc_embedding.shape) == 1:
|
326 |
+
doc_embedding = doc_embedding.unsqueeze(0)
|
327 |
+
|
328 |
+
# Calculate cosine similarity
|
329 |
+
similarity = F.cosine_similarity(query_embedding, doc_embedding).item()
|
330 |
+
|
331 |
+
# Only consider document if similarity exceeds threshold
|
332 |
+
if similarity > min_similarity:
|
333 |
+
relevant_docs.append(doc)
|
334 |
+
relevant_scores.append(similarity)
|
335 |
+
except Exception as e:
|
336 |
+
# If similarity calculation fails for this document, skip it
|
337 |
+
print(f"Error calculating similarity for document: {str(e)}")
|
338 |
+
continue
|
339 |
+
|
340 |
+
# Sort documents by relevance score
|
341 |
+
sorted_pairs = sorted(zip(relevant_docs, relevant_scores), key=lambda x: x[1], reverse=True)
|
342 |
+
|
343 |
+
# Unzip if any relevant documents exist
|
344 |
+
if sorted_pairs:
|
345 |
+
relevant_docs, relevant_scores = zip(*sorted_pairs)
|
346 |
+
return list(relevant_docs), list(relevant_scores)
|
347 |
+
else:
|
348 |
+
return [], []
|
349 |
+
|
350 |
+
except Exception as e:
|
351 |
+
# If everything fails, return all documents
|
352 |
+
print(f"Error in relevance check: {str(e)}")
|
353 |
+
return documents, [0.5] * len(documents) # Assign medium relevance score
|
354 |
+
def is_follow_up_request(query):
|
355 |
+
"""Determine if the query is asking for more information/elaboration on previous response."""
|
356 |
+
follow_up_patterns = [
|
357 |
+
r'(tell|explain|describe|give).+more',
|
358 |
+
r'(elaborate|clarify|expand)',
|
359 |
+
r'(more|additional) (information|details|explanation)',
|
360 |
+
r'(could|can) you (give|provide) (more|additional)',
|
361 |
+
r'(go|dive) (into|deeper)',
|
362 |
+
r'(explain|elaborate) (this|that|it)',
|
363 |
+
r'(what|how) (do|does|about) (that|this|it)',
|
364 |
+
r'(why|how) (is|are|was|were) (that|this|it)',
|
365 |
+
r'(more|examples)',
|
366 |
+
r'(please|pls)'
|
367 |
+
]
|
368 |
+
|
369 |
+
query_lower = query.lower()
|
370 |
+
|
371 |
+
# Direct check for common follow-up phrases
|
372 |
+
if any(re.search(pattern, query_lower) for pattern in follow_up_patterns):
|
373 |
+
return True
|
374 |
+
|
375 |
+
# Simple phrases that indicate follow-up
|
376 |
+
follow_up_phrases = [
|
377 |
+
"more", "further", "continue", "go on", "what else", "and", "also", "in addition",
|
378 |
+
"next", "then", "after", "what about", "tell me more", "elaborate", "explain"
|
379 |
+
]
|
380 |
+
|
381 |
+
# Check for these phrases
|
382 |
+
for phrase in follow_up_phrases:
|
383 |
+
if phrase in query_lower:
|
384 |
+
return True
|
385 |
+
|
386 |
+
return False
|
387 |
+
# Improved context management function
|
388 |
+
def manage_conversation_context(max_history=10):
|
389 |
+
"""Maintain a sliding window of conversation history to prevent context overflow."""
|
390 |
+
# Limit the history to the most recent exchanges
|
391 |
+
if len(st.session_state.conversation_context) > max_history * 2: # Each exchange is 2 entries (Q&A)
|
392 |
+
# Keep the most recent exchanges
|
393 |
+
st.session_state.conversation_context = st.session_state.conversation_context[-max_history * 2:]
|
394 |
+
|
395 |
+
# Also limit question and answer history
|
396 |
+
if len(st.session_state.question_history) > max_history:
|
397 |
+
st.session_state.question_history = st.session_state.question_history[-max_history:]
|
398 |
+
|
399 |
+
if len(st.session_state.answer_history) > max_history:
|
400 |
+
st.session_state.answer_history = st.session_state.answer_history[-max_history:]
|
401 |
+
|
402 |
+
# Function to check if a question is new or repeat
|
403 |
+
def is_new_question(question):
|
404 |
+
"""Check if a question is new by comparing its hash with previously asked questions."""
|
405 |
+
# Normalize the question text (lowercase, remove punctuation)
|
406 |
+
normalized = re.sub(r'[^\w\s]', '', question.lower())
|
407 |
+
|
408 |
+
# Calculate hash
|
409 |
+
question_hash = hashlib.md5(normalized.encode()).hexdigest()
|
410 |
+
|
411 |
+
# Check if we've seen this question before
|
412 |
+
if question_hash in st.session_state.question_hash_set:
|
413 |
+
return False
|
414 |
+
|
415 |
+
# Add to our set of seen questions
|
416 |
+
st.session_state.question_hash_set.add(question_hash)
|
417 |
+
return True
|
418 |
+
|
419 |
+
# Improved function to identify if a query is a follow-up question from our suggested follow-ups
|
420 |
+
def is_suggested_follow_up(query):
|
421 |
+
"""Check if the query matches one of our previously suggested follow-up questions."""
|
422 |
+
if not query or len(st.session_state.messages) < 2:
|
423 |
+
return False, None
|
424 |
+
|
425 |
+
# Clean the query
|
426 |
+
clean_query = query.strip().lower().rstrip('?')
|
427 |
+
|
428 |
+
# Look through recent assistant messages for suggested follow-ups
|
429 |
+
for i, msg in enumerate(reversed(st.session_state.messages)):
|
430 |
+
if msg["role"] == "assistant" and i < 6: # Only check recent messages
|
431 |
+
follow_up_match = re.search(r'π‘ \*\*Follow-up question:\*\* (.*?)$', msg["content"])
|
432 |
+
if follow_up_match:
|
433 |
+
suggested = follow_up_match.group(1).strip().lower().rstrip('?')
|
434 |
+
|
435 |
+
# Check similarity - exact match or very high similarity
|
436 |
+
if clean_query == suggested:
|
437 |
+
return True, msg["content"]
|
438 |
+
|
439 |
+
# Check if they're very similar (e.g., minor rewording)
|
440 |
+
similarity = calculate_text_similarity(clean_query, suggested)
|
441 |
+
if similarity > 0.85: # High threshold for similarity
|
442 |
+
return True, msg["content"]
|
443 |
+
|
444 |
+
return False, None
|
445 |
+
|
446 |
+
# Helper function to calculate text similarity
|
447 |
+
def calculate_text_similarity(text1, text2):
|
448 |
+
"""Calculate similarity between two text strings."""
|
449 |
+
try:
|
450 |
+
# Use sentence model to calculate similarity
|
451 |
+
embed1 = sentence_model.encode(text1, convert_to_tensor=True)
|
452 |
+
embed2 = sentence_model.encode(text2, convert_to_tensor=True)
|
453 |
+
|
454 |
+
similarity = util.pytorch_cos_sim(embed1, embed2).item()
|
455 |
+
return similarity
|
456 |
+
except Exception as e:
|
457 |
+
print(f"Error calculating similarity: {e}")
|
458 |
+
return 0.0
|
459 |
+
|
460 |
+
|
461 |
+
# Check if this is one of our suggested follow-up questions
|
462 |
+
is_follow_up, previous_content = is_suggested_follow_up(prompt)
|
463 |
+
|
464 |
+
# If it's a follow-up question we suggested, treat it as a new question
|
465 |
+
if is_follow_up:
|
466 |
+
# We want to answer this as a new query, not elaborate on the previous topic
|
467 |
+
pass
|
468 |
+
|
469 |
+
# Filter documents by relevance
|
470 |
+
relevant_docs, similarity_scores = check_document_relevance(prompt, context_docs, min_similarity=0.2)
|
471 |
+
|
472 |
+
# Extract sources
|
473 |
+
sources = set()
|
474 |
+
has_relevant_info = len(relevant_docs) > 0
|
475 |
+
|
476 |
+
for doc in relevant_docs:
|
477 |
+
if hasattr(doc, "metadata") and "source" in doc.metadata:
|
478 |
+
sources.add(doc.metadata["source"])
|
479 |
+
|
480 |
+
# If no relevant context was found in the PDFs
|
481 |
+
if not has_relevant_info:
|
482 |
+
# No specific information - generate a simple response
|
483 |
+
answer = generate_no_docs_response(prompt)
|
484 |
+
answer += f"\n\nπ‘ **Follow-up question:** Would you like to explore a topic from the educational documents instead?"
|
485 |
+
return answer, None, False, "Would you like to explore a topic from the educational documents instead?"
|
486 |
+
|
487 |
+
# Add the question to our history
|
488 |
+
if is_new_question(prompt):
|
489 |
+
st.session_state.question_history.append(prompt)
|
490 |
+
|
491 |
+
# Generate response from model
|
492 |
+
raw_response = generate_response_from_model(prompt)
|
493 |
+
|
494 |
+
# Post-process the response
|
495 |
+
final_response, new_follow_up = post_process_response(raw_response, prompt, ", ".join(sorted(sources)))
|
496 |
+
|
497 |
+
# Add the answer to our history
|
498 |
+
answer_only = re.sub(r'π‘ \*\*Follow-up question:\*\*.*$', '', final_response, flags=re.DOTALL).strip()
|
499 |
+
answer_only = re.sub(r'π \*\*Source:\*\*.*$', '', answer_only, flags=re.DOTALL).strip()
|
500 |
+
st.session_state.answer_history.append(answer_only)
|
501 |
+
|
502 |
+
# Manage context size
|
503 |
+
manage_conversation_context()
|
504 |
+
|
505 |
+
return final_response, ", ".join(sorted(sources)), False, new_follow_up
|
506 |
+
|
507 |
+
|
508 |
+
def clean_model_output(raw_response):
|
509 |
+
"""Thoroughly clean the model output to remove all prompt instructions and artifacts."""
|
510 |
+
# First pass: Remove common model prefixes
|
511 |
+
if "You are" in raw_response or "I am" in raw_response or "Based on" in raw_response:
|
512 |
+
content_start = None
|
513 |
+
|
514 |
+
# Look for paragraph breaks after standard prefixes and preambles
|
515 |
+
for pattern in [
|
516 |
+
"The current date is",
|
517 |
+
"headquartered in Paris",
|
518 |
+
"Based on your knowledge",
|
519 |
+
"Based on the information",
|
520 |
+
"Answer this question",
|
521 |
+
"You are an educational",
|
522 |
+
"I am an AI",
|
523 |
+
"As an educational"
|
524 |
+
]:
|
525 |
+
pattern_loc = raw_response.find(pattern)
|
526 |
+
if pattern_loc > -1:
|
527 |
+
# Find the end of this paragraph or a period
|
528 |
+
para_end = raw_response.find("\n\n", pattern_loc)
|
529 |
+
period_end = raw_response.find(". ", pattern_loc)
|
530 |
+
|
531 |
+
# Use whichever end we find first (and is valid)
|
532 |
+
if para_end > -1 and period_end > -1:
|
533 |
+
end_pos = min(para_end, period_end)
|
534 |
+
elif para_end > -1:
|
535 |
+
end_pos = para_end
|
536 |
+
elif period_end > -1:
|
537 |
+
end_pos = period_end + 1 # Include the period
|
538 |
+
else:
|
539 |
+
end_pos = -1
|
540 |
+
|
541 |
+
if end_pos > -1 and (content_start is None or end_pos > content_start):
|
542 |
+
content_start = end_pos + 2 # Skip past the end marker
|
543 |
+
|
544 |
+
# If we found a break point, skip everything before it
|
545 |
+
if content_start and content_start < len(raw_response):
|
546 |
+
raw_response = raw_response[content_start:]
|
547 |
+
|
548 |
+
# Remove strings that indicate a prompt or instruction
|
549 |
+
prompt_indicators = [
|
550 |
+
"Based on your knowledge, create a response",
|
551 |
+
"Answer this question based ONLY on the information provided below:",
|
552 |
+
"Answer this question:",
|
553 |
+
"Question:",
|
554 |
+
"Information:",
|
555 |
+
"Be concise, educational, and helpful.",
|
556 |
+
"End with a thoughtful follow-up question",
|
557 |
+
"Answer based on",
|
558 |
+
"This means that",
|
559 |
+
"A related follow-up question",
|
560 |
+
"Use this information:",
|
561 |
+
"Based on your knowledge"
|
562 |
+
]
|
563 |
+
|
564 |
+
for indicator in prompt_indicators:
|
565 |
+
if indicator in raw_response:
|
566 |
+
start_index = raw_response.find(indicator)
|
567 |
+
# Find end of line or paragraph or sentence
|
568 |
+
end_options = [
|
569 |
+
raw_response.find("\n\n", start_index),
|
570 |
+
raw_response.find("\n", start_index),
|
571 |
+
raw_response.find(". ", start_index)
|
572 |
+
]
|
573 |
+
# Filter out -1 values and find the closest endpoint
|
574 |
+
end_options = [x for x in end_options if x > -1]
|
575 |
+
if end_options:
|
576 |
+
end_index = min(end_options)
|
577 |
+
if end_index > start_index:
|
578 |
+
# If it ends with a period, include it
|
579 |
+
if raw_response[end_index:end_index+2] == ". ":
|
580 |
+
end_index += 1
|
581 |
+
raw_response = raw_response[:start_index] + raw_response[end_index+1:]
|
582 |
+
else:
|
583 |
+
# If no endpoint found, just remove the indicator
|
584 |
+
raw_response = raw_response.replace(indicator, "")
|
585 |
+
|
586 |
+
# Remove lines that start with typical system message indicators
|
587 |
+
lines = raw_response.split("\n")
|
588 |
+
cleaned_lines = []
|
589 |
+
|
590 |
+
skip_patterns = [
|
591 |
+
"answer this question",
|
592 |
+
"question:",
|
593 |
+
"information:",
|
594 |
+
"you are",
|
595 |
+
"i am",
|
596 |
+
"the current date is",
|
597 |
+
"be concise",
|
598 |
+
"end with",
|
599 |
+
"provide a detailed",
|
600 |
+
"follow-up question",
|
601 |
+
"use this information",
|
602 |
+
"based on your knowledge"
|
603 |
+
]
|
604 |
+
|
605 |
+
for line in lines:
|
606 |
+
lower_line = line.lower()
|
607 |
+
if not any(lower_line.startswith(pattern) for pattern in skip_patterns):
|
608 |
+
if not any(pattern in lower_line for pattern in ["based only on", "concise and helpful"]):
|
609 |
+
cleaned_lines.append(line)
|
610 |
+
|
611 |
+
# Rejoin cleaned lines
|
612 |
+
cleaned_text = "\n".join(cleaned_lines)
|
613 |
+
|
614 |
+
# Remove any isolated "Information:" or "Related follow-up:"
|
615 |
+
cleaned_text = re.sub(r'(?:^|\n)Information:(?:\n|$)', '\n', cleaned_text)
|
616 |
+
cleaned_text = re.sub(r'(?:^|\n)Question:(?:\n|$)', '\n', cleaned_text)
|
617 |
+
|
618 |
+
# Remove the follow-up question section
|
619 |
+
follow_up_patterns = [
|
620 |
+
r'Follow-up Question:.*?$',
|
621 |
+
r'Follow-up question:.*?$',
|
622 |
+
r'\*\*Follow-up question:\*\*.*?$',
|
623 |
+
r'\*\*Follow-up Question:\*\*.*?$'
|
624 |
+
]
|
625 |
+
|
626 |
+
for pattern in follow_up_patterns:
|
627 |
+
cleaned_text = re.sub(pattern, '', cleaned_text, flags=re.DOTALL)
|
628 |
+
|
629 |
+
# Remove any trailing system instructions
|
630 |
+
cleaned_text = re.sub(r'\[insert thoughtful follow-up.*?\]', '', cleaned_text, flags=re.DOTALL)
|
631 |
+
|
632 |
+
# Clean up excessive whitespace
|
633 |
+
cleaned_text = re.sub(r'\n{3,}', '\n\n', cleaned_text)
|
634 |
+
|
635 |
+
# Finally, clean up extra spaces and trim
|
636 |
+
return cleaned_text.strip()
|
637 |
+
|
638 |
+
def extract_follow_up_question(context_text, prev_question=None):
|
639 |
+
"""Generate a contextually appropriate follow-up question."""
|
640 |
+
# If we already asked a follow-up question, avoid repetition
|
641 |
+
if prev_question and "key differences between early chatbots" in prev_question:
|
642 |
+
return "What are some applications of chatbots in various industries?"
|
643 |
+
|
644 |
+
# Find keywords in the context to generate a relevant question
|
645 |
+
context_lower = context_text.lower()
|
646 |
+
|
647 |
+
if "chatbot" in context_lower or "eliza" in context_lower:
|
648 |
+
return "What are some key differences between early chatbots like ELIZA and modern conversational AI systems?"
|
649 |
+
|
650 |
+
elif "deepseek" in context_lower:
|
651 |
+
return "How does DeepSeek-R1 compare to other large language models in terms of reasoning capabilities?"
|
652 |
+
|
653 |
+
elif "knowledge distillation" in context_lower:
|
654 |
+
return "What are other techniques besides knowledge distillation that can make large models more efficient?"
|
655 |
+
|
656 |
+
elif "language model" in context_lower or "model" in context_lower:
|
657 |
+
return "What challenges do researchers face when developing more powerful language models?"
|
658 |
+
|
659 |
+
elif "reasoning" in context_lower:
|
660 |
+
return "How do reasoning capabilities in AI systems differ from human reasoning processes?"
|
661 |
+
|
662 |
+
# Default follow-up
|
663 |
+
return "What other aspects of this topic would you like to explore?"
|
664 |
+
|
665 |
+
def is_conversational_input(prompt):
|
666 |
+
"""Check if the user input is conversational rather than a document query."""
|
667 |
+
conversational_patterns = [
|
668 |
+
r'^(hi|hello|hey|greetings|howdy)[\s!.?]*$',
|
669 |
+
r'^(how are you|how\'s it going|what\'s up|how do you do)[\s!.?]*$',
|
670 |
+
r'^(good morning|good afternoon|good evening|good night)[\s!.?]*$',
|
671 |
+
r'^(thanks|thank you|thx|ty)[\s!.?]*$',
|
672 |
+
r'^(bye|goodbye|see you|farewell)[\s!.?]*$',
|
673 |
+
r'^(clear|reset|start over|new conversation)[\s!.?]*$'
|
674 |
+
]
|
675 |
+
|
676 |
+
prompt_lower = prompt.lower().strip()
|
677 |
+
return any(re.match(pattern, prompt_lower) for pattern in conversational_patterns)
|
678 |
+
|
679 |
+
def generate_conversational_response(prompt):
|
680 |
+
"""Generate a friendly conversational response with educational follow-ups."""
|
681 |
+
prompt_lower = prompt.lower().strip()
|
682 |
+
|
683 |
+
if re.match(r'^(hi|hello|hey|greetings|howdy)[\s!.?]*$', prompt_lower):
|
684 |
+
return "Hello! I'm your educational assistant. I can help you understand concepts from the documents or answer your questions. What would you like to learn about today?", True
|
685 |
+
|
686 |
+
elif re.match(r'^(how are you|how\'s it going|what\'s up|how do you do)[\s!.?]*$', prompt_lower):
|
687 |
+
return "I'm here and ready to help you learn! What topic from the documents would you like to explore today?", True
|
688 |
+
|
689 |
+
elif re.match(r'^(good morning|good afternoon|good evening)[\s!.?]*$', prompt_lower):
|
690 |
+
return f"{prompt.capitalize()}! What educational topics are you interested in exploring today?", True
|
691 |
+
|
692 |
+
elif re.match(r'^(thanks|thank you|thx|ty)[\s!.?]*$', prompt_lower):
|
693 |
+
return "You're welcome! Learning is a journey we take together. Would you like to explore another topic from the documents?", True
|
694 |
+
|
695 |
+
elif re.match(r'^(bye|goodbye|see you|farewell)[\s!.?]*$', prompt_lower):
|
696 |
+
return "Goodbye! Remember, learning is a lifelong journey. Feel free to return when you have more questions!", False
|
697 |
+
|
698 |
+
elif re.match(r'^(clear|reset|start over|new conversation)[\s!.?]*$', prompt_lower):
|
699 |
+
return "I'll start a new conversation. Your previous conversation history has been cleared.", True
|
700 |
+
|
701 |
+
else:
|
702 |
+
return "I'm here to help you learn. What specific topic from the documents would you like to explore?", True
|
703 |
+
|
704 |
+
def detect_conversation_topic_shift(prompt, conversation_history, threshold=0.4):
|
705 |
+
"""Detect if the conversation is shifting to a new topic."""
|
706 |
+
if len(conversation_history) < 2:
|
707 |
+
return False, 0.0
|
708 |
+
|
709 |
+
# Get the average embedding of the last few exchanges (up to 3)
|
710 |
+
recent_exchanges = conversation_history[-min(6, len(conversation_history)):]
|
711 |
+
recent_text = " ".join(recent_exchanges)
|
712 |
+
|
713 |
+
prompt_embedding = sentence_model.encode(prompt, convert_to_tensor=True)
|
714 |
+
recent_embedding = sentence_model.encode(recent_text, convert_to_tensor=True)
|
715 |
+
|
716 |
+
similarity = util.pytorch_cos_sim(prompt_embedding, recent_embedding).item()
|
717 |
+
|
718 |
+
return similarity < threshold, similarity
|
719 |
+
|
720 |
+
def extract_information_from_docs(docs, limit=2000):
|
721 |
+
"""Extract information from documents up to a character limit."""
|
722 |
+
extracted_text = ""
|
723 |
+
current_length = 0
|
724 |
+
|
725 |
+
for doc in docs:
|
726 |
+
if not hasattr(doc, "page_content"):
|
727 |
+
continue
|
728 |
+
|
729 |
+
if current_length + len(doc.page_content) <= limit:
|
730 |
+
extracted_text += doc.page_content + "\n\n"
|
731 |
+
current_length += len(doc.page_content) + 2
|
732 |
+
else:
|
733 |
+
# Add a partial chunk to reach the limit
|
734 |
+
remaining = limit - current_length
|
735 |
+
if remaining > 100: # Only add if we can get a meaningful chunk
|
736 |
+
extracted_text += doc.page_content[:remaining] + "..."
|
737 |
+
break
|
738 |
+
|
739 |
+
return extracted_text.strip()
|
740 |
+
|
741 |
+
def post_process_response(response, prompt, sources=None, prev_follow_up=None):
|
742 |
+
"""Format the response with proper source citation and follow-up."""
|
743 |
+
# Clean the response
|
744 |
+
clean_response = clean_model_output(response)
|
745 |
+
|
746 |
+
# Generate a follow-up question based on the content
|
747 |
+
follow_up = extract_follow_up_question(clean_response, prev_follow_up)
|
748 |
+
|
749 |
+
# Add source citation if available
|
750 |
+
if sources:
|
751 |
+
clean_response += f"\n\nπ **Source:** {sources}"
|
752 |
+
|
753 |
+
# Add the follow-up question
|
754 |
+
clean_response += f"\n\nπ‘ **Follow-up question:** {follow_up}"
|
755 |
+
|
756 |
+
return clean_response, follow_up
|
757 |
+
|
758 |
+
# Modified generate_response_from_model function to handle different question types
|
759 |
+
def generate_response_from_model(prompt, is_elaboration=False):
|
760 |
+
"""Generate a direct response from the model without any document context or content."""
|
761 |
+
if model is None or tokenizer is None:
|
762 |
+
return "Error: Model could not be loaded."
|
763 |
+
|
764 |
+
# Determine the prompt type
|
765 |
+
if is_elaboration:
|
766 |
+
model_prompt = "Provide more information and details about this topic."
|
767 |
+
else:
|
768 |
+
model_prompt = "Answer this question directly and factually."
|
769 |
+
|
770 |
+
try:
|
771 |
+
# Generate response
|
772 |
+
with st.spinner("Generating response..."):
|
773 |
+
# Format for model
|
774 |
+
system_message = "You are a helpful educational assistant that provides factual information about topics related to AI, language models, and conversational systems. Answer the question directly without repeating the question."
|
775 |
+
user_message = f"{model_prompt} Question: {prompt}"
|
776 |
+
|
777 |
+
if hasattr(tokenizer, "apply_chat_template"):
|
778 |
+
messages = [
|
779 |
+
{"role": "system", "content": system_message},
|
780 |
+
{"role": "user", "content": user_message}
|
781 |
+
]
|
782 |
+
inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to("cuda")
|
783 |
+
else:
|
784 |
+
combined_prompt = f"{system_message}\n\nUser: {user_message}"
|
785 |
+
inputs = tokenizer(combined_prompt, return_tensors="pt").to("cuda")
|
786 |
+
|
787 |
+
# Generate with increased token limit
|
788 |
+
outputs = model.generate(
|
789 |
+
inputs,
|
790 |
+
max_new_tokens=500,
|
791 |
+
temperature=0.7,
|
792 |
+
top_p=0.9,
|
793 |
+
do_sample=True,
|
794 |
+
eos_token_id=tokenizer.eos_token_id,
|
795 |
+
pad_token_id=tokenizer.eos_token_id,
|
796 |
+
repetition_penalty=1.1
|
797 |
+
)
|
798 |
+
|
799 |
+
# Decode
|
800 |
+
raw_response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
801 |
+
|
802 |
+
# More extensive cleaning to avoid including the question in the answer
|
803 |
+
raw_response = re.sub(r'.*?(As an AI|I am an AI|You asked about|In response to your question|Regarding your question)', '', raw_response, flags=re.DOTALL)
|
804 |
+
raw_response = raw_response.lstrip()
|
805 |
+
|
806 |
+
# Remove any instances where the model repeats the question
|
807 |
+
question_patterns = [
|
808 |
+
f"Question: {re.escape(prompt)}",
|
809 |
+
f"{re.escape(prompt)}",
|
810 |
+
"The question is about",
|
811 |
+
"You asked about"
|
812 |
+
]
|
813 |
+
|
814 |
+
for pattern in question_patterns:
|
815 |
+
raw_response = re.sub(pattern, '', raw_response, flags=re.IGNORECASE)
|
816 |
+
|
817 |
+
return raw_response
|
818 |
+
|
819 |
+
except Exception as e:
|
820 |
+
st.error(f"Error generating response: {str(e)}")
|
821 |
+
return f"I'm sorry, there was an error generating a response. Error: {str(e)}"
|
822 |
+
|
823 |
+
def generate_no_docs_response(prompt):
|
824 |
+
"""Generate a response when no relevant docs are found."""
|
825 |
+
response = "The documents don't contain information about this topic. "
|
826 |
+
|
827 |
+
# Add a gentle reminder about the scope of the assistant
|
828 |
+
if any(x in prompt.lower() for x in ["recipe", "cooking", "food", "baking",
|
829 |
+
"soup", "meal", "ingredient", "dish"]):
|
830 |
+
response += "I'm an educational assistant focused on the documents provided, which don't discuss cooking recipes."
|
831 |
+
else:
|
832 |
+
response += "I'm focused on the educational content in the provided documents."
|
833 |
+
|
834 |
+
return response
|
835 |
+
# Complete process_query function definition
|
836 |
+
def process_query(prompt, context_docs):
|
837 |
+
"""Process different types of queries appropriately."""
|
838 |
+
# First check if this is a conversational input
|
839 |
+
if is_conversational_input(prompt):
|
840 |
+
response, should_continue = generate_conversational_response(prompt)
|
841 |
+
|
842 |
+
# Check if this is a reset request
|
843 |
+
if re.match(r'^(clear|reset|start over|new conversation)[\s!.?]*$', prompt.lower().strip()):
|
844 |
+
return response, None, True, None
|
845 |
+
|
846 |
+
return response, None, False, None
|
847 |
+
|
848 |
+
# Check if this is one of our suggested follow-up questions
|
849 |
+
is_follow_up, previous_content = is_suggested_follow_up(prompt)
|
850 |
+
|
851 |
+
# Get previous follow-up question if any
|
852 |
+
prev_follow_up = None
|
853 |
+
if len(st.session_state.messages) > 0:
|
854 |
+
for msg in reversed(st.session_state.messages):
|
855 |
+
if msg["role"] == "assistant":
|
856 |
+
follow_up_match = re.search(r'π‘ \*\*Follow-up question:\*\* (.*?)$', msg["content"])
|
857 |
+
if follow_up_match:
|
858 |
+
prev_follow_up = follow_up_match.group(1)
|
859 |
+
break
|
860 |
+
|
861 |
+
# Handle follow-up/elaboration requests specifically
|
862 |
+
if (is_follow_up_request(prompt) or is_follow_up) and len(st.session_state.conversation_context) >= 2:
|
863 |
+
# If it's a follow-up from our suggestions, treat it as a new question
|
864 |
+
if is_follow_up:
|
865 |
+
# This is a suggested follow-up - treat it as a new question
|
866 |
+
pass # Continue with normal processing
|
867 |
+
else:
|
868 |
+
# This is a user asking for elaboration
|
869 |
+
# Get the previous exchange (original question)
|
870 |
+
original_query = None
|
871 |
+
for i in range(len(st.session_state.conversation_context)-2, -1, -2):
|
872 |
+
if i < len(st.session_state.conversation_context):
|
873 |
+
original_query = st.session_state.conversation_context[i]
|
874 |
+
break
|
875 |
+
|
876 |
+
if not original_query:
|
877 |
+
original_query = st.session_state.conversation_context[-2] # Fallback
|
878 |
+
|
879 |
+
# Generate an elaborated response
|
880 |
+
raw_response = generate_response_from_model(original_query, is_elaboration=True)
|
881 |
+
|
882 |
+
# Get sources from previous response if available
|
883 |
+
sources = None
|
884 |
+
for msg in reversed(st.session_state.messages):
|
885 |
+
if msg["role"] == "assistant":
|
886 |
+
source_match = re.search(r'π \*\*Source:\*\* (.*?)$', msg["content"])
|
887 |
+
if source_match:
|
888 |
+
sources = source_match.group(1)
|
889 |
+
break
|
890 |
+
|
891 |
+
final_response, new_follow_up = post_process_response(raw_response, original_query, sources=sources, prev_follow_up=prev_follow_up)
|
892 |
+
|
893 |
+
return final_response, sources, False, new_follow_up
|
894 |
+
|
895 |
+
# Not a follow-up, process as a new query
|
896 |
+
# Detect topic shift
|
897 |
+
topic_shift_warning = ""
|
898 |
+
if len(st.session_state.conversation_context) >= 4:
|
899 |
+
is_topic_shift, similarity_score = detect_conversation_topic_shift(prompt, st.session_state.conversation_context)
|
900 |
+
if is_topic_shift:
|
901 |
+
topic_shift_warning = "β οΈ It seems you're starting a new topic. I'll try to answer, but keep in mind this is different from what we were discussing. "
|
902 |
+
|
903 |
+
# Filter documents by relevance
|
904 |
+
relevant_docs, similarity_scores = check_document_relevance(prompt, context_docs, min_similarity=0.2)
|
905 |
+
|
906 |
+
# Extract sources
|
907 |
+
sources = set()
|
908 |
+
has_relevant_info = len(relevant_docs) > 0
|
909 |
+
|
910 |
+
for doc in relevant_docs:
|
911 |
+
if hasattr(doc, "metadata") and "source" in doc.metadata:
|
912 |
+
sources.add(doc.metadata["source"])
|
913 |
+
|
914 |
+
# If no relevant context was found in the PDFs
|
915 |
+
if not has_relevant_info:
|
916 |
+
# No specific information - generate a simple response
|
917 |
+
answer = topic_shift_warning + generate_no_docs_response(prompt)
|
918 |
+
answer += f"\n\nπ‘ **Follow-up question:** Would you like to explore a topic from the educational documents instead?"
|
919 |
+
return answer, None, False, "Would you like to explore a topic from the educational documents instead?"
|
920 |
+
|
921 |
+
# Add the question to our history
|
922 |
+
if is_new_question(prompt):
|
923 |
+
st.session_state.question_history.append(prompt)
|
924 |
+
|
925 |
+
# Generate response from model
|
926 |
+
raw_response = generate_response_from_model(prompt)
|
927 |
+
|
928 |
+
# Post-process the response
|
929 |
+
final_response, new_follow_up = post_process_response(raw_response, prompt, ", ".join(sorted(sources)), prev_follow_up)
|
930 |
+
|
931 |
+
# Add topic shift warning if needed
|
932 |
+
if topic_shift_warning:
|
933 |
+
final_response = topic_shift_warning + final_response
|
934 |
+
|
935 |
+
# Add the answer to our history
|
936 |
+
answer_only = re.sub(r'π‘ \*\*Follow-up question:\*\*.*$', '', final_response, flags=re.DOTALL).strip()
|
937 |
+
answer_only = re.sub(r'π \*\*Source:\*\*.*$', '', answer_only, flags=re.DOTALL).strip()
|
938 |
+
st.session_state.answer_history.append(answer_only)
|
939 |
+
|
940 |
+
# Manage context size
|
941 |
+
manage_conversation_context()
|
942 |
+
|
943 |
+
return final_response, ", ".join(sorted(sources)), False, new_follow_up
|
944 |
+
def generate_response(prompt, context_docs, conversation_history):
|
945 |
+
"""Generate an educational response with context awareness and follow-up questions."""
|
946 |
+
# Reset flag
|
947 |
+
should_reset = False
|
948 |
+
|
949 |
+
# Check if this is a conversational input
|
950 |
+
if is_conversational_input(prompt):
|
951 |
+
response, should_continue = generate_conversational_response(prompt)
|
952 |
+
|
953 |
+
# Check if this is a reset request
|
954 |
+
if re.match(r'^(clear|reset|start over|new conversation)[\s!.?]*$', prompt.lower().strip()):
|
955 |
+
# Set the reset flag
|
956 |
+
should_reset = True
|
957 |
+
|
958 |
+
return response, None, should_reset, None
|
959 |
+
|
960 |
+
# Get previous follow-up question if any
|
961 |
+
prev_follow_up = None
|
962 |
+
if len(st.session_state.messages) > 0:
|
963 |
+
for msg in reversed(st.session_state.messages):
|
964 |
+
if msg["role"] == "assistant":
|
965 |
+
follow_up_match = re.search(r'π‘ \*\*Follow-up question:\*\* (.*?)$', msg["content"])
|
966 |
+
if follow_up_match:
|
967 |
+
prev_follow_up = follow_up_match.group(1)
|
968 |
+
break
|
969 |
+
|
970 |
+
# Handle follow-up/elaboration requests specifically
|
971 |
+
if is_follow_up_request(prompt) and len(conversation_history) >= 2:
|
972 |
+
# Get the previous exchange
|
973 |
+
prev_query = conversation_history[-2] # Previous user query
|
974 |
+
prev_answer = conversation_history[-1] # Previous assistant answer
|
975 |
+
|
976 |
+
# Generate an elaborated response without document content
|
977 |
+
raw_response = generate_response_from_model(prev_query, is_elaboration=True)
|
978 |
+
final_response, new_follow_up = post_process_response(raw_response, prev_query, sources=None, prev_follow_up=prev_follow_up)
|
979 |
+
|
980 |
+
return final_response, None, should_reset, new_follow_up
|
981 |
+
|
982 |
+
# Not a follow-up, process as a new query
|
983 |
+
# Detect topic shift
|
984 |
+
topic_shift_warning = ""
|
985 |
+
if len(conversation_history) >= 4:
|
986 |
+
is_topic_shift, similarity_score = detect_conversation_topic_shift(prompt, conversation_history)
|
987 |
+
if is_topic_shift:
|
988 |
+
topic_shift_warning = "β οΈ It seems you're starting a new topic. I'll try to answer, but keep in mind this is different from what we were discussing. "
|
989 |
+
|
990 |
+
# Filter documents by relevance
|
991 |
+
relevant_docs, similarity_scores = check_document_relevance(prompt, context_docs, min_similarity=0.2)
|
992 |
+
|
993 |
+
# Extract sources
|
994 |
+
sources = set()
|
995 |
+
has_relevant_info = len(relevant_docs) > 0
|
996 |
+
|
997 |
+
for doc in relevant_docs:
|
998 |
+
if hasattr(doc, "metadata") and "source" in doc.metadata:
|
999 |
+
sources.add(doc.metadata["source"])
|
1000 |
+
|
1001 |
+
# If no relevant context was found in the PDFs
|
1002 |
+
if not has_relevant_info:
|
1003 |
+
# No specific information - generate a simple response
|
1004 |
+
answer = topic_shift_warning + generate_no_docs_response(prompt)
|
1005 |
+
answer += f"\n\nπ‘ **Follow-up question:** Would you like to explore a topic from the educational documents instead?"
|
1006 |
+
return answer, None, should_reset, "Would you like to explore a topic from the educational documents instead?"
|
1007 |
+
|
1008 |
+
# Generate response from model - don't include document text to avoid leakage
|
1009 |
+
raw_response = generate_response_from_model(prompt)
|
1010 |
+
|
1011 |
+
# Post-process the response
|
1012 |
+
final_response, new_follow_up = post_process_response(raw_response, prompt, ", ".join(sorted(sources)), prev_follow_up)
|
1013 |
+
|
1014 |
+
# Add topic shift warning if needed
|
1015 |
+
if topic_shift_warning:
|
1016 |
+
final_response = topic_shift_warning + final_response
|
1017 |
+
|
1018 |
+
return final_response, ", ".join(sorted(sources)), should_reset, new_follow_up
|
1019 |
+
|
1020 |
+
# Streamlit App UI
|
1021 |
+
st.title("π Educational PDF Chatbot")
|
1022 |
+
|
1023 |
+
# Add info section
|
1024 |
+
st.sidebar.title("System Info")
|
1025 |
+
st.sidebar.info("Educational Assistant")
|
1026 |
+
st.sidebar.write("Documents loaded:")
|
1027 |
+
for pdf in PDF_FILES:
|
1028 |
+
st.sidebar.write(f"- {pdf}")
|
1029 |
+
|
1030 |
+
# Initialize session state for chat history
|
1031 |
+
if "messages" not in st.session_state:
|
1032 |
+
st.session_state.messages = []
|
1033 |
+
# Add welcome message
|
1034 |
+
welcome_msg = "Hello! I'm your educational assistant. I can help you understand concepts in the documents. What would you like to explore today?"
|
1035 |
+
st.session_state.messages.append({"role": "assistant", "content": welcome_msg})
|
1036 |
+
|
1037 |
+
# Initialize conversation context tracker
|
1038 |
+
if "conversation_context" not in st.session_state:
|
1039 |
+
st.session_state.conversation_context = []
|
1040 |
+
|
1041 |
+
# Add session state for tracking conversation length for potential warnings
|
1042 |
+
if "conversation_turns" not in st.session_state:
|
1043 |
+
st.session_state.conversation_turns = 0
|
1044 |
+
|
1045 |
+
# Add session state for tracking follow-up questions to avoid repetition
|
1046 |
+
if "prev_follow_up" not in st.session_state:
|
1047 |
+
st.session_state.prev_follow_up = None
|
1048 |
+
|
1049 |
+
# Add a button to clear conversation
|
1050 |
+
col1, col2 = st.columns([4, 1])
|
1051 |
+
with col2:
|
1052 |
+
if st.button("New Conversation"):
|
1053 |
+
st.session_state.conversation_context = []
|
1054 |
+
st.session_state.conversation_turns = 0
|
1055 |
+
st.session_state.messages = []
|
1056 |
+
st.session_state.prev_follow_up = None
|
1057 |
+
welcome_msg = "Starting a new conversation. What would you like to learn about today?"
|
1058 |
+
st.session_state.messages.append({"role": "assistant", "content": welcome_msg})
|
1059 |
+
st.rerun()
|
1060 |
+
|
1061 |
+
if retriever:
|
1062 |
+
# Display chat messages
|
1063 |
+
for message in st.session_state.messages:
|
1064 |
+
with st.chat_message(message["role"]):
|
1065 |
+
st.markdown(message["content"])
|
1066 |
+
|
1067 |
+
# User input
|
1068 |
+
if prompt := st.chat_input("What would you like to learn today?"):
|
1069 |
+
# Add user message to history
|
1070 |
+
st.session_state.messages.append({"role": "user", "content": prompt})
|
1071 |
+
st.session_state.conversation_context.append(prompt)
|
1072 |
+
st.session_state.conversation_turns += 1
|
1073 |
+
|
1074 |
+
with st.chat_message("user"):
|
1075 |
+
st.markdown(prompt)
|
1076 |
+
|
1077 |
+
# Generate response
|
1078 |
+
with st.chat_message("assistant"):
|
1079 |
+
with st.spinner("Thinking..."):
|
1080 |
+
try:
|
1081 |
+
# Process query
|
1082 |
+
retrieved_docs = retriever.get_relevant_documents(prompt)
|
1083 |
+
|
1084 |
+
answer, sources, should_reset, new_follow_up = process_query(prompt, retrieved_docs)
|
1085 |
+
|
1086 |
+
# Handle conversation reset if needed
|
1087 |
+
if should_reset:
|
1088 |
+
st.session_state.conversation_context = []
|
1089 |
+
st.session_state.conversation_turns = 0
|
1090 |
+
st.session_state.messages = []
|
1091 |
+
st.session_state.question_history = []
|
1092 |
+
st.session_state.answer_history = []
|
1093 |
+
st.session_state.question_hash_set = set()
|
1094 |
+
st.session_state.messages.append({"role": "assistant", "content": answer})
|
1095 |
+
st.rerun()
|
1096 |
+
|
1097 |
+
# Store response in chat history
|
1098 |
+
st.session_state.messages.append({"role": "assistant", "content": answer})
|
1099 |
+
|
1100 |
+
# Store just the answer text without sources and follow-up in conversation context
|
1101 |
+
answer_only = re.sub(r'π‘ \*\*Follow-up question:\*\*.*$', '', answer, flags=re.DOTALL).strip()
|
1102 |
+
answer_only = re.sub(r'π \*\*Source:\*\*.*$', '', answer_only, flags=re.DOTALL).strip()
|
1103 |
+
st.session_state.conversation_context.append(answer_only)
|
1104 |
+
|
1105 |
+
# Display the formatted response
|
1106 |
+
st.markdown(answer)
|
1107 |
+
|
1108 |
+
except Exception as e:
|
1109 |
+
error_msg = f"An error occurred: {str(e)}"
|
1110 |
+
st.error(error_msg)
|
1111 |
+
st.session_state.messages.append({"role": "assistant", "content": error_msg})
|
1112 |
+
|
1113 |
+
else:
|
1114 |
+
st.error("Failed to load document retrieval system.")
|
requirements.txt
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
langchain
|
3 |
+
langchain-core
|
4 |
+
langchain_community
|
5 |
+
langchain_huggingface
|
6 |
+
PyPDF2
|
7 |
+
chromadb==0.4.24
|
8 |
+
uvicorn
|
9 |
+
pymupdf
|
10 |
+
pypdf
|
11 |
+
python-dotenv
|
12 |
+
transformers
|
13 |
+
sentence-transformers
|
14 |
+
accelerate>=0.26.0
|
15 |
+
bitsandbytes>=0.41.1
|
16 |
+
sentencepiece
|