Spaces:
Running
on
Zero
Running
on
Zero
AI-generated chat sample revision 1: support both seq2seq and causal LM models
Browse files- chatbot.py +89 -28
chatbot.py
CHANGED
|
@@ -1,26 +1,51 @@
|
|
| 1 |
from os import getenv
|
| 2 |
-
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
| 3 |
from utils import get_pytorch_device, spaces_gpu
|
| 4 |
|
| 5 |
# Global chatbot instance (initialized once)
|
| 6 |
_chatbot = None
|
| 7 |
_tokenizer = None
|
|
|
|
| 8 |
|
| 9 |
def get_chatbot():
|
| 10 |
-
|
|
|
|
| 11 |
if _chatbot is None:
|
| 12 |
model_id = getenv("CHAT_MODEL")
|
| 13 |
device = get_pytorch_device()
|
| 14 |
_tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
@spaces_gpu
|
| 22 |
def chat(message: str, conversation_history: list[dict] | None) -> tuple[str, list[dict]]:
|
| 23 |
-
model, tokenizer = get_chatbot()
|
| 24 |
|
| 25 |
# Initialize conversation history if this is the first message
|
| 26 |
if conversation_history is None:
|
|
@@ -29,36 +54,72 @@ def chat(message: str, conversation_history: list[dict] | None) -> tuple[str, li
|
|
| 29 |
# Add the user's message
|
| 30 |
conversation_history.append({"role": "user", "content": message})
|
| 31 |
|
| 32 |
-
# For BlenderBot models, format conversation as dialogue history
|
| 33 |
-
# Build the full conversation context as a string
|
| 34 |
-
dialogue_text = ""
|
| 35 |
-
for msg in conversation_history:
|
| 36 |
-
if msg["role"] == "user":
|
| 37 |
-
dialogue_text += f"User: {msg['content']}\n"
|
| 38 |
-
elif msg["role"] == "assistant":
|
| 39 |
-
dialogue_text += f"Assistant: {msg['content']}\n"
|
| 40 |
-
|
| 41 |
-
# Tokenize the input
|
| 42 |
-
inputs = tokenizer([dialogue_text], return_tensors="pt", truncation=True, max_length=512)
|
| 43 |
device = get_pytorch_device()
|
| 44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
# Generate response
|
| 47 |
outputs = model.generate(
|
| 48 |
**inputs,
|
| 49 |
-
max_new_tokens=
|
| 50 |
do_sample=True,
|
| 51 |
temperature=0.7,
|
| 52 |
pad_token_id=tokenizer.eos_token_id
|
| 53 |
)
|
| 54 |
|
| 55 |
-
# Decode the
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
|
| 63 |
# Add the assistant's response to history
|
| 64 |
conversation_history.append({"role": "assistant", "content": response})
|
|
|
|
| 1 |
from os import getenv
|
| 2 |
+
from transformers import AutoModelForCausalLM, AutoModelForSeq2SeqLM, AutoTokenizer
|
| 3 |
from utils import get_pytorch_device, spaces_gpu
|
| 4 |
|
| 5 |
# Global chatbot instance (initialized once)
|
| 6 |
_chatbot = None
|
| 7 |
_tokenizer = None
|
| 8 |
+
_is_seq2seq = None
|
| 9 |
|
| 10 |
def get_chatbot():
|
| 11 |
+
"""Get or create the chatbot model instance. Supports both causal LM and seq2seq models."""
|
| 12 |
+
global _chatbot, _tokenizer, _is_seq2seq
|
| 13 |
if _chatbot is None:
|
| 14 |
model_id = getenv("CHAT_MODEL")
|
| 15 |
device = get_pytorch_device()
|
| 16 |
_tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 17 |
+
|
| 18 |
+
# Try to determine model type and load accordingly
|
| 19 |
+
# Check tokenizer config or model config to see if it's seq2seq
|
| 20 |
+
try:
|
| 21 |
+
from transformers import AutoConfig
|
| 22 |
+
config = AutoConfig.from_pretrained(model_id)
|
| 23 |
+
# Seq2seq models have encoder/decoder, causal LMs don't
|
| 24 |
+
_is_seq2seq = hasattr(config, 'is_encoder_decoder') and config.is_encoder_decoder
|
| 25 |
+
except Exception:
|
| 26 |
+
# Default to causal LM (most modern chat models)
|
| 27 |
+
_is_seq2seq = False
|
| 28 |
+
|
| 29 |
+
if _is_seq2seq:
|
| 30 |
+
_chatbot = AutoModelForSeq2SeqLM.from_pretrained(
|
| 31 |
+
model_id,
|
| 32 |
+
use_safetensors=True
|
| 33 |
+
).to(device)
|
| 34 |
+
else:
|
| 35 |
+
_chatbot = AutoModelForCausalLM.from_pretrained(
|
| 36 |
+
model_id,
|
| 37 |
+
use_safetensors=True
|
| 38 |
+
).to(device)
|
| 39 |
+
|
| 40 |
+
# Set pad token if not set
|
| 41 |
+
if _tokenizer.pad_token is None:
|
| 42 |
+
_tokenizer.pad_token = _tokenizer.eos_token
|
| 43 |
+
|
| 44 |
+
return _chatbot, _tokenizer, _is_seq2seq
|
| 45 |
|
| 46 |
@spaces_gpu
|
| 47 |
def chat(message: str, conversation_history: list[dict] | None) -> tuple[str, list[dict]]:
|
| 48 |
+
model, tokenizer, is_seq2seq = get_chatbot()
|
| 49 |
|
| 50 |
# Initialize conversation history if this is the first message
|
| 51 |
if conversation_history is None:
|
|
|
|
| 54 |
# Add the user's message
|
| 55 |
conversation_history.append({"role": "user", "content": message})
|
| 56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
device = get_pytorch_device()
|
| 58 |
+
|
| 59 |
+
# Check if tokenizer has a chat template (modern chat models)
|
| 60 |
+
use_chat_template = hasattr(tokenizer, 'chat_template') and tokenizer.chat_template is not None
|
| 61 |
+
|
| 62 |
+
if use_chat_template:
|
| 63 |
+
# Use chat template for modern chat models (Qwen, Mistral, etc.)
|
| 64 |
+
try:
|
| 65 |
+
formatted_input = tokenizer.apply_chat_template(
|
| 66 |
+
conversation_history,
|
| 67 |
+
tokenize=False,
|
| 68 |
+
add_generation_prompt=True
|
| 69 |
+
)
|
| 70 |
+
inputs = tokenizer(formatted_input, return_tensors="pt", truncation=True).to(device)
|
| 71 |
+
except Exception:
|
| 72 |
+
use_chat_template = False
|
| 73 |
+
|
| 74 |
+
if not use_chat_template:
|
| 75 |
+
# For models without chat templates (BlenderBot, older models)
|
| 76 |
+
if is_seq2seq:
|
| 77 |
+
# Seq2seq format: "User: ...\nAssistant: ..."
|
| 78 |
+
dialogue_text = ""
|
| 79 |
+
for msg in conversation_history:
|
| 80 |
+
if msg["role"] == "user":
|
| 81 |
+
dialogue_text += f"User: {msg['content']}\n"
|
| 82 |
+
elif msg["role"] == "assistant":
|
| 83 |
+
dialogue_text += f"Assistant: {msg['content']}\n"
|
| 84 |
+
inputs = tokenizer([dialogue_text], return_tensors="pt", truncation=True, max_length=512).to(device)
|
| 85 |
+
else:
|
| 86 |
+
# Causal LM format: just concatenate messages
|
| 87 |
+
dialogue_text = ""
|
| 88 |
+
for msg in conversation_history:
|
| 89 |
+
if msg["role"] == "user":
|
| 90 |
+
dialogue_text += f"User: {msg['content']}\n\n"
|
| 91 |
+
elif msg["role"] == "assistant":
|
| 92 |
+
dialogue_text += f"Assistant: {msg['content']}\n\n"
|
| 93 |
+
dialogue_text += "Assistant:"
|
| 94 |
+
inputs = tokenizer(dialogue_text, return_tensors="pt", truncation=True, max_length=1024).to(device)
|
| 95 |
|
| 96 |
# Generate response
|
| 97 |
outputs = model.generate(
|
| 98 |
**inputs,
|
| 99 |
+
max_new_tokens=256,
|
| 100 |
do_sample=True,
|
| 101 |
temperature=0.7,
|
| 102 |
pad_token_id=tokenizer.eos_token_id
|
| 103 |
)
|
| 104 |
|
| 105 |
+
# Decode the response
|
| 106 |
+
if is_seq2seq:
|
| 107 |
+
# For seq2seq, output is just the generated response
|
| 108 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 109 |
+
# Clean up any "Assistant:" prefix
|
| 110 |
+
if response.startswith("Assistant:"):
|
| 111 |
+
response = response[len("Assistant:"):].strip()
|
| 112 |
+
else:
|
| 113 |
+
# For causal LMs, extract only the newly generated part
|
| 114 |
+
if use_chat_template:
|
| 115 |
+
# Extract only new tokens (generated part)
|
| 116 |
+
input_length = inputs.input_ids.shape[1]
|
| 117 |
+
generated_tokens = outputs[0][input_length:]
|
| 118 |
+
response = tokenizer.decode(generated_tokens, skip_special_tokens=True)
|
| 119 |
+
else:
|
| 120 |
+
# Extract text after the prompt
|
| 121 |
+
full_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 122 |
+
response = full_text.split("Assistant:")[-1].strip()
|
| 123 |
|
| 124 |
# Add the assistant's response to history
|
| 125 |
conversation_history.append({"role": "assistant", "content": response})
|