Spaces:
Running
on
Zero
Running
on
Zero
Move environment variable querying code out of the inference functions
Browse files- automatic_speech_recognition.py +6 -7
- chatbot.py +14 -11
- image_classification.py +5 -5
- image_to_text.py +10 -9
- text_to_image.py +5 -6
- text_to_speech.py +6 -4
automatic_speech_recognition.py
CHANGED
|
@@ -4,7 +4,7 @@ from os import getenv, path, unlink
|
|
| 4 |
import gradio as gr
|
| 5 |
from utils import save_audio_to_temp_file, get_model_sample_rate, request_audio
|
| 6 |
|
| 7 |
-
def automatic_speech_recognition(client: InferenceClient, audio: tuple[int, bytes]) -> str:
|
| 8 |
"""Transcribe audio to text using Hugging Face Inference API.
|
| 9 |
|
| 10 |
This function converts speech audio into text transcription. The audio is
|
|
@@ -13,6 +13,7 @@ def automatic_speech_recognition(client: InferenceClient, audio: tuple[int, byte
|
|
| 13 |
|
| 14 |
Args:
|
| 15 |
client: Hugging Face InferenceClient instance for API calls.
|
|
|
|
| 16 |
audio: Tuple containing:
|
| 17 |
- int: Sample rate of the input audio (e.g., 44100 Hz)
|
| 18 |
- bytes: Raw audio data as bytes
|
|
@@ -21,18 +22,15 @@ def automatic_speech_recognition(client: InferenceClient, audio: tuple[int, byte
|
|
| 21 |
String containing the transcribed text from the audio.
|
| 22 |
|
| 23 |
Note:
|
| 24 |
-
- The model ID is determined by the AUDIO_TRANSCRIPTION_MODEL environment variable.
|
| 25 |
- Audio is automatically resampled to match the model's expected sample rate.
|
| 26 |
- Audio is saved as a WAV file for InferenceClient compatibility.
|
| 27 |
- Automatically cleans up temporary files after transcription.
|
| 28 |
-
- Uses openai/whisper-large-v3 or similar ASR models.
|
| 29 |
"""
|
| 30 |
temp_file_path = None
|
| 31 |
try:
|
| 32 |
-
|
| 33 |
-
sample_rate = get_model_sample_rate(model_id)
|
| 34 |
temp_file_path = save_audio_to_temp_file(sample_rate, audio)
|
| 35 |
-
result = client.automatic_speech_recognition(temp_file_path, model=
|
| 36 |
return result["text"]
|
| 37 |
finally:
|
| 38 |
if temp_file_path and path.exists(temp_file_path): # Clean up temporary file.
|
|
@@ -54,6 +52,7 @@ def create_asr_tab(client: InferenceClient):
|
|
| 54 |
Args:
|
| 55 |
client: Hugging Face InferenceClient instance to pass to the automatic_speech_recognition function.
|
| 56 |
"""
|
|
|
|
| 57 |
gr.Markdown("Transcribe audio to text.")
|
| 58 |
audio_transcription_url_input = gr.Textbox(label="Audio URL")
|
| 59 |
audio_transcription_audio_request_button = gr.Button("Get Audio")
|
|
@@ -66,7 +65,7 @@ def create_asr_tab(client: InferenceClient):
|
|
| 66 |
audio_transcription_generate_button = gr.Button("Transcribe")
|
| 67 |
audio_transcription_output = gr.Textbox(label="Text")
|
| 68 |
audio_transcription_generate_button.click(
|
| 69 |
-
fn=partial(automatic_speech_recognition, client),
|
| 70 |
inputs=audio_transcription_audio_input,
|
| 71 |
outputs=audio_transcription_output
|
| 72 |
)
|
|
|
|
| 4 |
import gradio as gr
|
| 5 |
from utils import save_audio_to_temp_file, get_model_sample_rate, request_audio
|
| 6 |
|
| 7 |
+
def automatic_speech_recognition(client: InferenceClient, model: str, audio: tuple[int, bytes]) -> str:
|
| 8 |
"""Transcribe audio to text using Hugging Face Inference API.
|
| 9 |
|
| 10 |
This function converts speech audio into text transcription. The audio is
|
|
|
|
| 13 |
|
| 14 |
Args:
|
| 15 |
client: Hugging Face InferenceClient instance for API calls.
|
| 16 |
+
model: Hugging Face model ID to use for automatic speech recognition.
|
| 17 |
audio: Tuple containing:
|
| 18 |
- int: Sample rate of the input audio (e.g., 44100 Hz)
|
| 19 |
- bytes: Raw audio data as bytes
|
|
|
|
| 22 |
String containing the transcribed text from the audio.
|
| 23 |
|
| 24 |
Note:
|
|
|
|
| 25 |
- Audio is automatically resampled to match the model's expected sample rate.
|
| 26 |
- Audio is saved as a WAV file for InferenceClient compatibility.
|
| 27 |
- Automatically cleans up temporary files after transcription.
|
|
|
|
| 28 |
"""
|
| 29 |
temp_file_path = None
|
| 30 |
try:
|
| 31 |
+
sample_rate = get_model_sample_rate(model)
|
|
|
|
| 32 |
temp_file_path = save_audio_to_temp_file(sample_rate, audio)
|
| 33 |
+
result = client.automatic_speech_recognition(temp_file_path, model=model)
|
| 34 |
return result["text"]
|
| 35 |
finally:
|
| 36 |
if temp_file_path and path.exists(temp_file_path): # Clean up temporary file.
|
|
|
|
| 52 |
Args:
|
| 53 |
client: Hugging Face InferenceClient instance to pass to the automatic_speech_recognition function.
|
| 54 |
"""
|
| 55 |
+
model_id = getenv("AUDIO_TRANSCRIPTION_MODEL")
|
| 56 |
gr.Markdown("Transcribe audio to text.")
|
| 57 |
audio_transcription_url_input = gr.Textbox(label="Audio URL")
|
| 58 |
audio_transcription_audio_request_button = gr.Button("Get Audio")
|
|
|
|
| 65 |
audio_transcription_generate_button = gr.Button("Transcribe")
|
| 66 |
audio_transcription_output = gr.Textbox(label="Text")
|
| 67 |
audio_transcription_generate_button.click(
|
| 68 |
+
fn=partial(automatic_speech_recognition, client, model_id),
|
| 69 |
inputs=audio_transcription_audio_input,
|
| 70 |
outputs=audio_transcription_output
|
| 71 |
)
|
chatbot.py
CHANGED
|
@@ -8,7 +8,7 @@ _chatbot = None
|
|
| 8 |
_tokenizer = None
|
| 9 |
_is_seq2seq = None
|
| 10 |
|
| 11 |
-
def get_chatbot():
|
| 12 |
"""Get or create the chatbot model instance.
|
| 13 |
|
| 14 |
This function implements a singleton pattern to load and cache the chatbot
|
|
@@ -16,6 +16,9 @@ def get_chatbot():
|
|
| 16 |
models) and sequence-to-sequence models (like BlenderBot). The model type
|
| 17 |
is automatically detected from the model configuration.
|
| 18 |
|
|
|
|
|
|
|
|
|
|
| 19 |
Returns:
|
| 20 |
Tuple containing:
|
| 21 |
- Model: The loaded transformer model (AutoModelForCausalLM or AutoModelForSeq2SeqLM)
|
|
@@ -23,7 +26,6 @@ def get_chatbot():
|
|
| 23 |
- bool: Whether the model is a seq2seq model (True) or causal LM (False)
|
| 24 |
|
| 25 |
Note:
|
| 26 |
-
- The model ID is determined by the CHAT_MODEL environment variable.
|
| 27 |
- Models are loaded with safetensors for secure loading.
|
| 28 |
- Automatically selects the best available device (CUDA/XPU/MPS/CPU).
|
| 29 |
- Sets pad_token to eos_token if pad_token is not configured.
|
|
@@ -31,15 +33,14 @@ def get_chatbot():
|
|
| 31 |
"""
|
| 32 |
global _chatbot, _tokenizer, _is_seq2seq
|
| 33 |
if _chatbot is None:
|
| 34 |
-
model_id = getenv("CHAT_MODEL")
|
| 35 |
device = get_pytorch_device()
|
| 36 |
-
_tokenizer = AutoTokenizer.from_pretrained(
|
| 37 |
|
| 38 |
# Try to determine model type and load accordingly
|
| 39 |
# Check tokenizer config or model config to see if it's seq2seq
|
| 40 |
try:
|
| 41 |
from transformers import AutoConfig
|
| 42 |
-
config = AutoConfig.from_pretrained(
|
| 43 |
# Seq2seq models have encoder/decoder, causal LMs don't
|
| 44 |
_is_seq2seq = hasattr(config, 'is_encoder_decoder') and config.is_encoder_decoder
|
| 45 |
except Exception:
|
|
@@ -48,12 +49,12 @@ def get_chatbot():
|
|
| 48 |
|
| 49 |
if _is_seq2seq:
|
| 50 |
_chatbot = AutoModelForSeq2SeqLM.from_pretrained(
|
| 51 |
-
|
| 52 |
use_safetensors=True
|
| 53 |
).to(device)
|
| 54 |
else:
|
| 55 |
_chatbot = AutoModelForCausalLM.from_pretrained(
|
| 56 |
-
|
| 57 |
use_safetensors=True
|
| 58 |
).to(device)
|
| 59 |
|
|
@@ -64,7 +65,7 @@ def get_chatbot():
|
|
| 64 |
return _chatbot, _tokenizer, _is_seq2seq
|
| 65 |
|
| 66 |
@spaces_gpu
|
| 67 |
-
def chat(message: str, conversation_history: list[dict] | None) -> tuple[str, list[dict]]:
|
| 68 |
"""Generate a chatbot response given a user message and conversation history.
|
| 69 |
|
| 70 |
This function handles conversation with AI chatbots, supporting both modern
|
|
@@ -73,6 +74,7 @@ def chat(message: str, conversation_history: list[dict] | None) -> tuple[str, li
|
|
| 73 |
formats inputs appropriately based on the model type.
|
| 74 |
|
| 75 |
Args:
|
|
|
|
| 76 |
message: The user's current message as a string.
|
| 77 |
conversation_history: Optional list of previous conversation messages.
|
| 78 |
Each message is a dict with "role" ("user" or "assistant") and "content".
|
|
@@ -92,7 +94,7 @@ def chat(message: str, conversation_history: list[dict] | None) -> tuple[str, li
|
|
| 92 |
- Automatically manages conversation context and history
|
| 93 |
- Extracts only newly generated text for causal LMs with chat templates
|
| 94 |
"""
|
| 95 |
-
|
| 96 |
|
| 97 |
# Initialize conversation history if this is the first message
|
| 98 |
if conversation_history is None:
|
|
@@ -141,7 +143,7 @@ def chat(message: str, conversation_history: list[dict] | None) -> tuple[str, li
|
|
| 141 |
inputs = tokenizer(dialogue_text, return_tensors="pt", truncation=True, max_length=1024).to(device)
|
| 142 |
|
| 143 |
# Generate response
|
| 144 |
-
outputs =
|
| 145 |
**inputs,
|
| 146 |
max_new_tokens=256,
|
| 147 |
do_sample=True,
|
|
@@ -188,6 +190,7 @@ def create_chatbot_tab():
|
|
| 188 |
and manages the conversion between Gradio's chat format and the internal
|
| 189 |
conversation history format.
|
| 190 |
"""
|
|
|
|
| 191 |
gr.Markdown("Have a conversation with an AI chatbot.")
|
| 192 |
chatbot_history = gr.State(value=None) # Store the conversation history.
|
| 193 |
chatbot_output = gr.Chatbot(label="Conversation")
|
|
@@ -214,7 +217,7 @@ def create_chatbot_tab():
|
|
| 214 |
"""
|
| 215 |
if not message.strip():
|
| 216 |
return history, conversation_state, ""
|
| 217 |
-
response, updated_conversation = chat(message, conversation_state) # Get response from chatbot.
|
| 218 |
if history is None: # Update Gradio chat history format: list of [user_message, bot_message] pairs.
|
| 219 |
history = []
|
| 220 |
history.append([message, response])
|
|
|
|
| 8 |
_tokenizer = None
|
| 9 |
_is_seq2seq = None
|
| 10 |
|
| 11 |
+
def get_chatbot(model: str):
|
| 12 |
"""Get or create the chatbot model instance.
|
| 13 |
|
| 14 |
This function implements a singleton pattern to load and cache the chatbot
|
|
|
|
| 16 |
models) and sequence-to-sequence models (like BlenderBot). The model type
|
| 17 |
is automatically detected from the model configuration.
|
| 18 |
|
| 19 |
+
Args:
|
| 20 |
+
model: Hugging Face model ID to use for the chatbot.
|
| 21 |
+
|
| 22 |
Returns:
|
| 23 |
Tuple containing:
|
| 24 |
- Model: The loaded transformer model (AutoModelForCausalLM or AutoModelForSeq2SeqLM)
|
|
|
|
| 26 |
- bool: Whether the model is a seq2seq model (True) or causal LM (False)
|
| 27 |
|
| 28 |
Note:
|
|
|
|
| 29 |
- Models are loaded with safetensors for secure loading.
|
| 30 |
- Automatically selects the best available device (CUDA/XPU/MPS/CPU).
|
| 31 |
- Sets pad_token to eos_token if pad_token is not configured.
|
|
|
|
| 33 |
"""
|
| 34 |
global _chatbot, _tokenizer, _is_seq2seq
|
| 35 |
if _chatbot is None:
|
|
|
|
| 36 |
device = get_pytorch_device()
|
| 37 |
+
_tokenizer = AutoTokenizer.from_pretrained(model)
|
| 38 |
|
| 39 |
# Try to determine model type and load accordingly
|
| 40 |
# Check tokenizer config or model config to see if it's seq2seq
|
| 41 |
try:
|
| 42 |
from transformers import AutoConfig
|
| 43 |
+
config = AutoConfig.from_pretrained(model)
|
| 44 |
# Seq2seq models have encoder/decoder, causal LMs don't
|
| 45 |
_is_seq2seq = hasattr(config, 'is_encoder_decoder') and config.is_encoder_decoder
|
| 46 |
except Exception:
|
|
|
|
| 49 |
|
| 50 |
if _is_seq2seq:
|
| 51 |
_chatbot = AutoModelForSeq2SeqLM.from_pretrained(
|
| 52 |
+
model,
|
| 53 |
use_safetensors=True
|
| 54 |
).to(device)
|
| 55 |
else:
|
| 56 |
_chatbot = AutoModelForCausalLM.from_pretrained(
|
| 57 |
+
model,
|
| 58 |
use_safetensors=True
|
| 59 |
).to(device)
|
| 60 |
|
|
|
|
| 65 |
return _chatbot, _tokenizer, _is_seq2seq
|
| 66 |
|
| 67 |
@spaces_gpu
|
| 68 |
+
def chat(model: str, message: str, conversation_history: list[dict] | None) -> tuple[str, list[dict]]:
|
| 69 |
"""Generate a chatbot response given a user message and conversation history.
|
| 70 |
|
| 71 |
This function handles conversation with AI chatbots, supporting both modern
|
|
|
|
| 74 |
formats inputs appropriately based on the model type.
|
| 75 |
|
| 76 |
Args:
|
| 77 |
+
model: Hugging Face model ID to use for the chatbot.
|
| 78 |
message: The user's current message as a string.
|
| 79 |
conversation_history: Optional list of previous conversation messages.
|
| 80 |
Each message is a dict with "role" ("user" or "assistant") and "content".
|
|
|
|
| 94 |
- Automatically manages conversation context and history
|
| 95 |
- Extracts only newly generated text for causal LMs with chat templates
|
| 96 |
"""
|
| 97 |
+
model_instance, tokenizer, is_seq2seq = get_chatbot(model)
|
| 98 |
|
| 99 |
# Initialize conversation history if this is the first message
|
| 100 |
if conversation_history is None:
|
|
|
|
| 143 |
inputs = tokenizer(dialogue_text, return_tensors="pt", truncation=True, max_length=1024).to(device)
|
| 144 |
|
| 145 |
# Generate response
|
| 146 |
+
outputs = model_instance.generate(
|
| 147 |
**inputs,
|
| 148 |
max_new_tokens=256,
|
| 149 |
do_sample=True,
|
|
|
|
| 190 |
and manages the conversion between Gradio's chat format and the internal
|
| 191 |
conversation history format.
|
| 192 |
"""
|
| 193 |
+
model_id = getenv("CHAT_MODEL")
|
| 194 |
gr.Markdown("Have a conversation with an AI chatbot.")
|
| 195 |
chatbot_history = gr.State(value=None) # Store the conversation history.
|
| 196 |
chatbot_output = gr.Chatbot(label="Conversation")
|
|
|
|
| 217 |
"""
|
| 218 |
if not message.strip():
|
| 219 |
return history, conversation_state, ""
|
| 220 |
+
response, updated_conversation = chat(model_id, message, conversation_state) # Get response from chatbot.
|
| 221 |
if history is None: # Update Gradio chat history format: list of [user_message, bot_message] pairs.
|
| 222 |
history = []
|
| 223 |
history.append([message, response])
|
image_classification.py
CHANGED
|
@@ -8,7 +8,7 @@ from pandas import DataFrame
|
|
| 8 |
from utils import save_image_to_temp_file, request_image
|
| 9 |
|
| 10 |
|
| 11 |
-
def image_classification(client: InferenceClient, image: Image) -> DataFrame:
|
| 12 |
"""Classify an image using Hugging Face Inference API.
|
| 13 |
|
| 14 |
This function classifies a recyclable item image into categories:
|
|
@@ -18,6 +18,7 @@ def image_classification(client: InferenceClient, image: Image) -> DataFrame:
|
|
| 18 |
|
| 19 |
Args:
|
| 20 |
client: Hugging Face InferenceClient instance for API calls.
|
|
|
|
| 21 |
image: PIL Image object to classify.
|
| 22 |
|
| 23 |
Returns:
|
|
@@ -26,14 +27,12 @@ def image_classification(client: InferenceClient, image: Image) -> DataFrame:
|
|
| 26 |
- Probability: The confidence score as a percentage string (e.g., "95.23%")
|
| 27 |
|
| 28 |
Note:
|
| 29 |
-
- The model ID is determined by the IMAGE_CLASSIFICATION_MODEL environment variable.
|
| 30 |
-
- Uses Trash-Net model for recyclable item classification.
|
| 31 |
- Automatically cleans up temporary files after classification.
|
| 32 |
- Temporary file is created with format preservation if possible.
|
| 33 |
"""
|
| 34 |
try:
|
| 35 |
temp_file_path = save_image_to_temp_file(image) # Needed because InferenceClient does not accept PIL Images directly.
|
| 36 |
-
classifications = client.image_classification(temp_file_path, model=
|
| 37 |
return pd.DataFrame({
|
| 38 |
"Label": classification.label,
|
| 39 |
"Probability": f"{classification.score:.2%}"
|
|
@@ -60,6 +59,7 @@ def create_image_classification_tab(client: InferenceClient):
|
|
| 60 |
Args:
|
| 61 |
client: Hugging Face InferenceClient instance to pass to the image_classification function.
|
| 62 |
"""
|
|
|
|
| 63 |
gr.Markdown("Classify a recyclable item as one of: cardboard, glass, metal, paper, plastic, or other using [Trash-Net](https://huggingface.co/prithivMLmods/Trash-Net).")
|
| 64 |
image_classification_url_input = gr.Textbox(label="Image URL")
|
| 65 |
image_classification_image_request_button = gr.Button("Get Image")
|
|
@@ -72,7 +72,7 @@ def create_image_classification_tab(client: InferenceClient):
|
|
| 72 |
image_classification_button = gr.Button("Classify")
|
| 73 |
image_classification_output = gr.Dataframe(label="Classification", headers=["Label", "Probability"], interactive=False)
|
| 74 |
image_classification_button.click(
|
| 75 |
-
fn=partial(image_classification, client),
|
| 76 |
inputs=image_classification_image_input,
|
| 77 |
outputs=image_classification_output
|
| 78 |
)
|
|
|
|
| 8 |
from utils import save_image_to_temp_file, request_image
|
| 9 |
|
| 10 |
|
| 11 |
+
def image_classification(client: InferenceClient, model: str, image: Image) -> DataFrame:
|
| 12 |
"""Classify an image using Hugging Face Inference API.
|
| 13 |
|
| 14 |
This function classifies a recyclable item image into categories:
|
|
|
|
| 18 |
|
| 19 |
Args:
|
| 20 |
client: Hugging Face InferenceClient instance for API calls.
|
| 21 |
+
model: Hugging Face model ID to use for image classification.
|
| 22 |
image: PIL Image object to classify.
|
| 23 |
|
| 24 |
Returns:
|
|
|
|
| 27 |
- Probability: The confidence score as a percentage string (e.g., "95.23%")
|
| 28 |
|
| 29 |
Note:
|
|
|
|
|
|
|
| 30 |
- Automatically cleans up temporary files after classification.
|
| 31 |
- Temporary file is created with format preservation if possible.
|
| 32 |
"""
|
| 33 |
try:
|
| 34 |
temp_file_path = save_image_to_temp_file(image) # Needed because InferenceClient does not accept PIL Images directly.
|
| 35 |
+
classifications = client.image_classification(temp_file_path, model=model)
|
| 36 |
return pd.DataFrame({
|
| 37 |
"Label": classification.label,
|
| 38 |
"Probability": f"{classification.score:.2%}"
|
|
|
|
| 59 |
Args:
|
| 60 |
client: Hugging Face InferenceClient instance to pass to the image_classification function.
|
| 61 |
"""
|
| 62 |
+
model_id = getenv("IMAGE_CLASSIFICATION_MODEL")
|
| 63 |
gr.Markdown("Classify a recyclable item as one of: cardboard, glass, metal, paper, plastic, or other using [Trash-Net](https://huggingface.co/prithivMLmods/Trash-Net).")
|
| 64 |
image_classification_url_input = gr.Textbox(label="Image URL")
|
| 65 |
image_classification_image_request_button = gr.Button("Get Image")
|
|
|
|
| 72 |
image_classification_button = gr.Button("Classify")
|
| 73 |
image_classification_output = gr.Dataframe(label="Classification", headers=["Label", "Probability"], interactive=False)
|
| 74 |
image_classification_button.click(
|
| 75 |
+
fn=partial(image_classification, client, model_id),
|
| 76 |
inputs=image_classification_image_input,
|
| 77 |
outputs=image_classification_output
|
| 78 |
)
|
image_to_text.py
CHANGED
|
@@ -1,4 +1,5 @@
|
|
| 1 |
import gc
|
|
|
|
| 2 |
from os import getenv
|
| 3 |
import gradio as gr
|
| 4 |
from PIL.Image import Image
|
|
@@ -7,7 +8,7 @@ from utils import get_pytorch_device, spaces_gpu, request_image
|
|
| 7 |
|
| 8 |
|
| 9 |
@spaces_gpu
|
| 10 |
-
def image_to_text(image: Image) -> list[str]:
|
| 11 |
"""Generate text captions for an image using BLIP model.
|
| 12 |
|
| 13 |
This function uses a BLIP (Bootstrapping Language-Image Pre-training) model
|
|
@@ -15,29 +16,28 @@ def image_to_text(image: Image) -> list[str]:
|
|
| 15 |
loaded, inference is performed, and then cleaned up to free GPU memory.
|
| 16 |
|
| 17 |
Args:
|
|
|
|
| 18 |
image: PIL Image object to generate captions for.
|
| 19 |
|
| 20 |
Returns:
|
| 21 |
List of string captions describing the image.
|
| 22 |
|
| 23 |
Note:
|
| 24 |
-
- The model ID is determined by the IMAGE_TO_TEXT_MODEL environment variable.
|
| 25 |
- Uses safetensors for secure model loading.
|
| 26 |
- Automatically selects the best available device (CUDA/XPU/MPS/CPU).
|
| 27 |
- Cleans up model and GPU memory after inference.
|
| 28 |
- Uses beam search with 3 beams, max length 20, min length 5.
|
| 29 |
"""
|
| 30 |
-
image_to_text_model_id = getenv("IMAGE_TO_TEXT_MODEL")
|
| 31 |
pytorch_device = get_pytorch_device()
|
| 32 |
-
processor = AutoProcessor.from_pretrained(
|
| 33 |
-
|
| 34 |
-
|
| 35 |
use_safetensors=True # Use safetensors to avoid torch.load restriction.
|
| 36 |
).to(pytorch_device)
|
| 37 |
inputs = processor(images=image, return_tensors="pt").to(pytorch_device)
|
| 38 |
-
generated_ids =
|
| 39 |
results = processor.batch_decode(generated_ids, skip_special_tokens=True)
|
| 40 |
-
del
|
| 41 |
gc.collect()
|
| 42 |
return results
|
| 43 |
|
|
@@ -51,6 +51,7 @@ def create_image_to_text_tab():
|
|
| 51 |
- Image preview component
|
| 52 |
- Caption button and output list
|
| 53 |
"""
|
|
|
|
| 54 |
gr.Markdown("Generate a text description of an image.")
|
| 55 |
image_to_text_url_input = gr.Textbox(label="Image URL")
|
| 56 |
image_to_text_image_request_button = gr.Button("Get Image")
|
|
@@ -63,7 +64,7 @@ def create_image_to_text_tab():
|
|
| 63 |
image_to_text_button = gr.Button("Caption")
|
| 64 |
image_to_text_output = gr.List(label="Captions", headers=["Caption"])
|
| 65 |
image_to_text_button.click(
|
| 66 |
-
fn=image_to_text,
|
| 67 |
inputs=image_to_text_image_input,
|
| 68 |
outputs=image_to_text_output
|
| 69 |
)
|
|
|
|
| 1 |
import gc
|
| 2 |
+
from functools import partial
|
| 3 |
from os import getenv
|
| 4 |
import gradio as gr
|
| 5 |
from PIL.Image import Image
|
|
|
|
| 8 |
|
| 9 |
|
| 10 |
@spaces_gpu
|
| 11 |
+
def image_to_text(model: str, image: Image) -> list[str]:
|
| 12 |
"""Generate text captions for an image using BLIP model.
|
| 13 |
|
| 14 |
This function uses a BLIP (Bootstrapping Language-Image Pre-training) model
|
|
|
|
| 16 |
loaded, inference is performed, and then cleaned up to free GPU memory.
|
| 17 |
|
| 18 |
Args:
|
| 19 |
+
model: Hugging Face model ID to use for image captioning.
|
| 20 |
image: PIL Image object to generate captions for.
|
| 21 |
|
| 22 |
Returns:
|
| 23 |
List of string captions describing the image.
|
| 24 |
|
| 25 |
Note:
|
|
|
|
| 26 |
- Uses safetensors for secure model loading.
|
| 27 |
- Automatically selects the best available device (CUDA/XPU/MPS/CPU).
|
| 28 |
- Cleans up model and GPU memory after inference.
|
| 29 |
- Uses beam search with 3 beams, max length 20, min length 5.
|
| 30 |
"""
|
|
|
|
| 31 |
pytorch_device = get_pytorch_device()
|
| 32 |
+
processor = AutoProcessor.from_pretrained(model)
|
| 33 |
+
model_instance = BlipForConditionalGeneration.from_pretrained(
|
| 34 |
+
model,
|
| 35 |
use_safetensors=True # Use safetensors to avoid torch.load restriction.
|
| 36 |
).to(pytorch_device)
|
| 37 |
inputs = processor(images=image, return_tensors="pt").to(pytorch_device)
|
| 38 |
+
generated_ids = model_instance.generate(pixel_values=inputs.pixel_values, num_beams=3, max_length=20, min_length=5)
|
| 39 |
results = processor.batch_decode(generated_ids, skip_special_tokens=True)
|
| 40 |
+
del model_instance, inputs
|
| 41 |
gc.collect()
|
| 42 |
return results
|
| 43 |
|
|
|
|
| 51 |
- Image preview component
|
| 52 |
- Caption button and output list
|
| 53 |
"""
|
| 54 |
+
model_id = getenv("IMAGE_TO_TEXT_MODEL")
|
| 55 |
gr.Markdown("Generate a text description of an image.")
|
| 56 |
image_to_text_url_input = gr.Textbox(label="Image URL")
|
| 57 |
image_to_text_image_request_button = gr.Button("Get Image")
|
|
|
|
| 64 |
image_to_text_button = gr.Button("Caption")
|
| 65 |
image_to_text_output = gr.List(label="Captions", headers=["Caption"])
|
| 66 |
image_to_text_button.click(
|
| 67 |
+
fn=partial(image_to_text, model_id),
|
| 68 |
inputs=image_to_text_image_input,
|
| 69 |
outputs=image_to_text_output
|
| 70 |
)
|
text_to_image.py
CHANGED
|
@@ -5,20 +5,18 @@ from PIL.Image import Image
|
|
| 5 |
from huggingface_hub import InferenceClient
|
| 6 |
|
| 7 |
|
| 8 |
-
def text_to_image(client: InferenceClient, prompt: str) -> Image:
|
| 9 |
"""Generate an image from a text prompt using Hugging Face Inference API.
|
| 10 |
|
| 11 |
Args:
|
| 12 |
client: Hugging Face InferenceClient instance for API calls.
|
|
|
|
| 13 |
prompt: Text description of the desired image.
|
| 14 |
|
| 15 |
Returns:
|
| 16 |
PIL Image object representing the generated image.
|
| 17 |
-
|
| 18 |
-
Note:
|
| 19 |
-
The model to use is determined by the TEXT_TO_IMAGE_MODEL environment variable.
|
| 20 |
"""
|
| 21 |
-
return client.text_to_image(prompt, model=
|
| 22 |
|
| 23 |
|
| 24 |
def create_text_to_image_tab(client: InferenceClient):
|
|
@@ -30,12 +28,13 @@ def create_text_to_image_tab(client: InferenceClient):
|
|
| 30 |
Args:
|
| 31 |
client: Hugging Face InferenceClient instance to pass to the text_to_image function.
|
| 32 |
"""
|
|
|
|
| 33 |
gr.Markdown("Generate an image from a text prompt.")
|
| 34 |
text_to_image_prompt = gr.Textbox(label="Prompt")
|
| 35 |
text_to_image_generate_button = gr.Button("Generate")
|
| 36 |
text_to_image_output = gr.Image(label="Image", type="pil")
|
| 37 |
text_to_image_generate_button.click(
|
| 38 |
-
fn=partial(text_to_image, client),
|
| 39 |
inputs=text_to_image_prompt,
|
| 40 |
outputs=text_to_image_output
|
| 41 |
)
|
|
|
|
| 5 |
from huggingface_hub import InferenceClient
|
| 6 |
|
| 7 |
|
| 8 |
+
def text_to_image(client: InferenceClient, model: str, prompt: str) -> Image:
|
| 9 |
"""Generate an image from a text prompt using Hugging Face Inference API.
|
| 10 |
|
| 11 |
Args:
|
| 12 |
client: Hugging Face InferenceClient instance for API calls.
|
| 13 |
+
model: Hugging Face model ID to use for text-to-image generation.
|
| 14 |
prompt: Text description of the desired image.
|
| 15 |
|
| 16 |
Returns:
|
| 17 |
PIL Image object representing the generated image.
|
|
|
|
|
|
|
|
|
|
| 18 |
"""
|
| 19 |
+
return client.text_to_image(prompt, model=model)
|
| 20 |
|
| 21 |
|
| 22 |
def create_text_to_image_tab(client: InferenceClient):
|
|
|
|
| 28 |
Args:
|
| 29 |
client: Hugging Face InferenceClient instance to pass to the text_to_image function.
|
| 30 |
"""
|
| 31 |
+
model_id = getenv("TEXT_TO_IMAGE_MODEL")
|
| 32 |
gr.Markdown("Generate an image from a text prompt.")
|
| 33 |
text_to_image_prompt = gr.Textbox(label="Prompt")
|
| 34 |
text_to_image_generate_button = gr.Button("Generate")
|
| 35 |
text_to_image_output = gr.Image(label="Image", type="pil")
|
| 36 |
text_to_image_generate_button.click(
|
| 37 |
+
fn=partial(text_to_image, client, model_id),
|
| 38 |
inputs=text_to_image_prompt,
|
| 39 |
outputs=text_to_image_output
|
| 40 |
)
|
text_to_speech.py
CHANGED
|
@@ -1,4 +1,5 @@
|
|
| 1 |
import gc
|
|
|
|
| 2 |
from os import getenv
|
| 3 |
import gradio as gr
|
| 4 |
from transformers import pipeline
|
|
@@ -6,7 +7,7 @@ from utils import spaces_gpu
|
|
| 6 |
|
| 7 |
|
| 8 |
@spaces_gpu
|
| 9 |
-
def text_to_speech(text: str) -> tuple[int, bytes]:
|
| 10 |
"""Convert text to speech audio using a TTS (Text-to-Speech) model.
|
| 11 |
|
| 12 |
This function uses a transformer pipeline to generate speech audio from
|
|
@@ -14,6 +15,7 @@ def text_to_speech(text: str) -> tuple[int, bytes]:
|
|
| 14 |
up to free GPU memory.
|
| 15 |
|
| 16 |
Args:
|
|
|
|
| 17 |
text: Input text string to convert to speech.
|
| 18 |
|
| 19 |
Returns:
|
|
@@ -22,7 +24,6 @@ def text_to_speech(text: str) -> tuple[int, bytes]:
|
|
| 22 |
- bytes: Raw audio data as bytes
|
| 23 |
|
| 24 |
Note:
|
| 25 |
-
- The model ID is determined by the TEXT_TO_SPEECH_MODEL environment variable.
|
| 26 |
- Uses safetensors for secure model loading.
|
| 27 |
- Automatically selects the best available device (CUDA/XPU/MPS/CPU).
|
| 28 |
- Cleans up model and GPU memory after inference.
|
|
@@ -30,7 +31,7 @@ def text_to_speech(text: str) -> tuple[int, bytes]:
|
|
| 30 |
"""
|
| 31 |
narrator = pipeline(
|
| 32 |
"text-to-speech",
|
| 33 |
-
|
| 34 |
model_kwargs={"use_safetensors": True} # Use safetensors to avoid torch.load restriction.
|
| 35 |
)
|
| 36 |
result = narrator(text)
|
|
@@ -45,12 +46,13 @@ def create_text_to_speech_tab():
|
|
| 45 |
This function sets up all UI components for text-to-speech generation,
|
| 46 |
including input textbox, generate button, and output audio player.
|
| 47 |
"""
|
|
|
|
| 48 |
gr.Markdown("Generate speech from text.")
|
| 49 |
text_to_speech_text = gr.Textbox(label="Text")
|
| 50 |
text_to_speech_generate_button = gr.Button("Generate")
|
| 51 |
text_to_speech_output = gr.Audio(label="Speech")
|
| 52 |
text_to_speech_generate_button.click(
|
| 53 |
-
fn=text_to_speech,
|
| 54 |
inputs=text_to_speech_text,
|
| 55 |
outputs=text_to_speech_output
|
| 56 |
)
|
|
|
|
| 1 |
import gc
|
| 2 |
+
from functools import partial
|
| 3 |
from os import getenv
|
| 4 |
import gradio as gr
|
| 5 |
from transformers import pipeline
|
|
|
|
| 7 |
|
| 8 |
|
| 9 |
@spaces_gpu
|
| 10 |
+
def text_to_speech(model: str, text: str) -> tuple[int, bytes]:
|
| 11 |
"""Convert text to speech audio using a TTS (Text-to-Speech) model.
|
| 12 |
|
| 13 |
This function uses a transformer pipeline to generate speech audio from
|
|
|
|
| 15 |
up to free GPU memory.
|
| 16 |
|
| 17 |
Args:
|
| 18 |
+
model: Hugging Face model ID to use for text-to-speech.
|
| 19 |
text: Input text string to convert to speech.
|
| 20 |
|
| 21 |
Returns:
|
|
|
|
| 24 |
- bytes: Raw audio data as bytes
|
| 25 |
|
| 26 |
Note:
|
|
|
|
| 27 |
- Uses safetensors for secure model loading.
|
| 28 |
- Automatically selects the best available device (CUDA/XPU/MPS/CPU).
|
| 29 |
- Cleans up model and GPU memory after inference.
|
|
|
|
| 31 |
"""
|
| 32 |
narrator = pipeline(
|
| 33 |
"text-to-speech",
|
| 34 |
+
model,
|
| 35 |
model_kwargs={"use_safetensors": True} # Use safetensors to avoid torch.load restriction.
|
| 36 |
)
|
| 37 |
result = narrator(text)
|
|
|
|
| 46 |
This function sets up all UI components for text-to-speech generation,
|
| 47 |
including input textbox, generate button, and output audio player.
|
| 48 |
"""
|
| 49 |
+
model_id = getenv("TEXT_TO_SPEECH_MODEL")
|
| 50 |
gr.Markdown("Generate speech from text.")
|
| 51 |
text_to_speech_text = gr.Textbox(label="Text")
|
| 52 |
text_to_speech_generate_button = gr.Button("Generate")
|
| 53 |
text_to_speech_output = gr.Audio(label="Speech")
|
| 54 |
text_to_speech_generate_button.click(
|
| 55 |
+
fn=partial(text_to_speech, model_id),
|
| 56 |
inputs=text_to_speech_text,
|
| 57 |
outputs=text_to_speech_output
|
| 58 |
)
|