Spaces:
Sleeping
Sleeping
File size: 9,439 Bytes
595752f 6bd1e51 fe109d5 6bd1e51 595752f 6bd1e51 595752f 6bd1e51 595752f 6bd1e51 595752f 8c3c59b 595752f fe109d5 595752f fe109d5 595752f 6bd1e51 595752f 6bd1e51 595752f 6bd1e51 595752f 6bd1e51 595752f 6bd1e51 595752f fe109d5 595752f 6bd1e51 595752f 6bd1e51 595752f 6bd1e51 595752f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 |
import os
import re
import tempfile
import logging
from typing import Optional, Dict, Tuple, Any
from pathlib import Path
import gradio as gr
import torch
import whisper
import fitz # PyMuPDF
import docx
from bs4 import BeautifulSoup
import markdown2
import chardet
from transformers import pipeline, MarianTokenizer, AutoModelForSeq2SeqLM
# -------------------------------
# Configuration & Logging Setup
# -------------------------------
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
HF_TOKEN = os.getenv("hffff")
# Language Pair Models
MODELS: Dict[Tuple[str, str], Dict[str, str]] = {
("English", "Wolof"): {"model_name": "LocaleNLP/localenlp-eng-wol-0.03", "tag": ">>wol<<"},
("Wolof", "English"): {"model_name": "LocaleNLP/localenlp-wol-eng-0.03", "tag": ">>eng<<"},
("English", "Hausa"): {"model_name": "LocaleNLP/localenlp-eng-hau-0.01", "tag": ">>hau<<"},
("Hausa", "English"): {"model_name": "LocaleNLP/localenlp-hau-eng-0.01", "tag": ">>eng<<"},
("English", "Darija"): {"model_name": "LocaleNLP/english_darija", "tag": ">>dar<<"}
}
SUPPORTED_LANGUAGES = ["English", "Wolof", "Hausa", "Darija"]
INPUT_MODES = ["Text", "Audio", "File"]
SUPPORTED_FILE_TYPES = [".pdf", ".docx", ".html", ".htm", ".md", ".srt", ".txt"]
# -------------------------------
# Model Manager
# -------------------------------
class ModelManager:
"""Manages loading and caching of translation and transcription models."""
def __init__(self):
self.translation_pipeline = None
self.whisper_model = None
def load_translation_model(self, src_lang: str, tgt_lang: str) -> Tuple[Any, str]:
key = (src_lang, tgt_lang)
if key not in MODELS:
raise ValueError(f"Unsupported language pair: {src_lang} -> {tgt_lang}")
config = MODELS[key]
model_name = config["model_name"]
lang_tag = config["tag"]
if self.translation_pipeline is None or self.translation_pipeline.model.config._name_or_path != model_name:
logger.info(f"Loading translation model: {model_name}")
model = AutoModelForSeq2SeqLM.from_pretrained(model_name, token=HF_TOKEN).to(DEVICE)
tokenizer = MarianTokenizer.from_pretrained(model_name, token=HF_TOKEN)
self.translation_pipeline = pipeline(
"translation",
model=model,
tokenizer=tokenizer,
device=0 if DEVICE.type == "cuda" else -1
)
return self.translation_pipeline, lang_tag
def load_whisper_model(self) -> Any:
if self.whisper_model is None:
logger.info("Loading Whisper base model...")
self.whisper_model = whisper.load_model("base")
return self.whisper_model
# -------------------------------
# File Processing Utilities
# -------------------------------
def extract_text_from_file(file_path: str) -> str:
"""Extracts text from various file types."""
ext = Path(file_path).suffix.lower()
content = Path(file_path).read_bytes()
if ext == ".pdf":
with fitz.open(stream=content, filetype="pdf") as doc:
return "\n".join(page.get_text() for page in doc)
elif ext == ".docx":
doc = docx.Document(file_path)
return "\n".join(p.text for p in doc.paragraphs)
elif ext in (".html", ".htm"):
return BeautifulSoup(content.decode("utf-8", errors="ignore"), "html.parser").get_text()
elif ext == ".md":
html = markdown2.markdown(content.decode("utf-8", errors="ignore"))
return BeautifulSoup(html, "html.parser").get_text()
elif ext == ".srt":
decoded = content.decode("utf-8", errors="ignore")
return re.sub(r"\d+\n\d{2}:\d{2}:\d{2},\d{3} --> .*?\n", "", decoded)
elif ext in (".txt", ".text"):
encoding = chardet.detect(content)["encoding"]
return content.decode(encoding or "utf-8", errors="ignore")
else:
raise ValueError(f"Unsupported file type: {ext}")
# -------------------------------
# Translation Logic
# -------------------------------
def translate_text(text: str, src_lang: str, tgt_lang: str, model_manager: ModelManager) -> str:
"""Translates input text using the specified language pair."""
pipe, tag = model_manager.load_translation_model(src_lang, tgt_lang)
paragraphs = text.splitlines()
translated_output = []
with torch.no_grad():
for para in paragraphs:
if not para.strip():
translated_output.append("")
continue
sentences = [s.strip() for s in para.split(". ") if s.strip()]
formatted = [f"{tag} {sentence}" for sentence in sentences]
results = pipe(
formatted,
max_length=5000,
num_beams=5,
early_stopping=True,
no_repeat_ngram_size=3,
repetition_penalty=1.5,
length_penalty=1.2
)
translated_sentences = [r["translation_text"].capitalize() for r in results]
translated_output.append(". ".join(translated_sentences))
return "\n".join(translated_output)
# -------------------------------
# Audio Transcription
# -------------------------------
def transcribe_audio(file_path: str, model_manager: ModelManager) -> str:
"""Transcribes audio file using Whisper."""
model = model_manager.load_whisper_model()
result = model.transcribe(file_path)
return result["text"]
# -------------------------------
# Main Processing Function
# -------------------------------
def process_input(
mode: str,
src_lang: str,
text_input: str,
audio_path: Optional[str],
file_obj: Optional[gr.FileData]
) -> str:
"""Processes input based on selected mode."""
if mode == "Text":
return text_input
elif mode == "Audio":
if src_lang != "English":
raise ValueError("Audio input must be in English.")
if not audio_path:
raise ValueError("No audio file uploaded.")
return transcribe_audio(audio_path, model_manager)
elif mode == "File":
if not file_obj:
raise ValueError("No file uploaded.")
return extract_text_from_file(file_obj.name)
return ""
# -------------------------------
# Gradio UI Logic
# -------------------------------
model_manager = ModelManager()
def update_visibility(mode: str) -> Dict[str, Any]:
"""Update visibility of input components based on selected mode."""
return {
input_text: gr.update(visible=(mode == "Text")),
audio_input: gr.update(visible=(mode == "Audio")),
file_input: gr.update(visible=(mode == "File")),
extracted_text: gr.update(value="", visible=True),
output_text: gr.update(value="")
}
def handle_process(
mode: str,
src_lang: str,
text_input: str,
audio_path: Optional[str],
file_obj: Optional[gr.FileData]
) -> Tuple[str, str]:
"""Handles the initial processing of input."""
try:
extracted = process_input(mode, src_lang, text_input, audio_path, file_obj)
return extracted, ""
except Exception as e:
logger.error(f"Processing error: {e}")
return "", f"Error: {str(e)}"
def handle_translate(extracted_text: str, src_lang: str, tgt_lang: str) -> str:
"""Handles translation of extracted text."""
if not extracted_text.strip():
return "No input text to translate."
try:
return translate_text(extracted_text, src_lang, tgt_lang, model_manager)
except Exception as e:
logger.error(f"Translation error: {e}")
return f"Translation error: {str(e)}"
# -------------------------------
# Gradio Interface
# -------------------------------
with gr.Blocks(title="LocaleNLP Translator") as demo:
gr.Markdown("## 🌍 LocaleNLP Multi-language Translator")
gr.Markdown("Supports translation between English, Wolof, Hausa, and Darija. Audio input must be in English.")
with gr.Row():
input_mode = gr.Radio(choices=INPUT_MODES, label="Input Type", value="Text")
input_lang = gr.Dropdown(choices=SUPPORTED_LANGUAGES[:-1], label="Input Language", value="English")
output_lang = gr.Dropdown(choices=SUPPORTED_LANGUAGES, label="Output Language", value="Wolof")
input_text = gr.Textbox(label="Enter Text", lines=10, visible=True)
audio_input = gr.Audio(label="Upload Audio (.wav, .mp3, .m4a)", type="filepath", visible=False)
file_input = gr.File(file_types=SUPPORTED_FILE_TYPES, label="Upload Document", visible=False)
extracted_text = gr.Textbox(label="Extracted / Transcribed Text", lines=10, interactive=False)
translate_button = gr.Button("Translate")
output_text = gr.Textbox(label="Translated Text", lines=10, interactive=False)
input_mode.change(fn=update_visibility, inputs=input_mode, outputs=[input_text, audio_input, file_input, extracted_text, output_text])
translate_button.click(
fn=handle_process,
inputs=[input_mode, input_lang, input_text, audio_input, file_input],
outputs=[extracted_text, output_text]
).then(
fn=handle_translate,
inputs=[extracted_text, input_lang, output_lang],
outputs=output_text
)
if __name__ == "__main__":
demo.launch() |