Update app.py
Browse files
app.py
CHANGED
|
@@ -1,43 +1,21 @@
|
|
| 1 |
from peft import PeftModel
|
| 2 |
-
from transformers import
|
| 3 |
-
AutoModelForCausalLM,
|
| 4 |
-
AutoTokenizer,
|
| 5 |
-
GenerationConfig,
|
| 6 |
-
TextIteratorStreamer
|
| 7 |
-
)
|
| 8 |
-
import torch
|
| 9 |
import gradio as gr
|
| 10 |
-
from threading import Thread
|
| 11 |
|
| 12 |
-
# Загрузка
|
| 13 |
base_model = AutoModelForCausalLM.from_pretrained(
|
| 14 |
"Qwen/Qwen2.5-0.5B-Instruct",
|
| 15 |
-
device_map="auto"
|
| 16 |
-
torch_dtype=torch.float16,
|
| 17 |
-
low_cpu_mem_usage=True
|
| 18 |
)
|
| 19 |
-
|
| 20 |
-
# Объединение основной модели с адаптерами
|
| 21 |
model = PeftModel.from_pretrained(base_model, "Locon213/ThinkLite")
|
| 22 |
-
model = model.merge_and_unload()
|
| 23 |
-
|
| 24 |
-
# Применяем оптимизации для CPU
|
| 25 |
-
model = torch.quantization.quantize_dynamic(
|
| 26 |
-
model,
|
| 27 |
-
{torch.nn.Linear},
|
| 28 |
-
dtype=torch.qint8
|
| 29 |
-
)
|
| 30 |
-
model.config.use_cache = True
|
| 31 |
-
|
| 32 |
-
# Загрузка токенизатора
|
| 33 |
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct")
|
| 34 |
|
| 35 |
-
# Конфигурация генерации
|
| 36 |
generation_config = GenerationConfig(
|
| 37 |
temperature=0.7,
|
| 38 |
top_p=0.9,
|
| 39 |
top_k=50,
|
| 40 |
-
max_new_tokens=
|
| 41 |
repetition_penalty=1.1,
|
| 42 |
do_sample=True
|
| 43 |
)
|
|
@@ -49,57 +27,35 @@ def format_prompt(message, history):
|
|
| 49 |
prompt += f"<<<USER>>> {message}\n<<<ASSISTANT>>>"
|
| 50 |
return prompt
|
| 51 |
|
| 52 |
-
def
|
|
|
|
| 53 |
formatted_prompt = format_prompt(message, history)
|
| 54 |
-
inputs = tokenizer(formatted_prompt, return_tensors="pt").to(model.device)
|
| 55 |
-
|
| 56 |
-
streamer = TextIteratorStreamer(
|
| 57 |
-
tokenizer,
|
| 58 |
-
skip_prompt=True,
|
| 59 |
-
skip_special_tokens=True,
|
| 60 |
-
timeout=30
|
| 61 |
-
)
|
| 62 |
|
| 63 |
-
|
|
|
|
|
|
|
| 64 |
**inputs,
|
| 65 |
generation_config=generation_config,
|
| 66 |
-
streamer=streamer,
|
| 67 |
pad_token_id=tokenizer.eos_token_id
|
| 68 |
)
|
| 69 |
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
partial_message = ""
|
| 74 |
-
for new_token in streamer:
|
| 75 |
-
partial_message += new_token
|
| 76 |
-
yield partial_message
|
| 77 |
-
|
| 78 |
-
# Создание интерфейса с оптимизированным дизайном
|
| 79 |
-
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 80 |
-
gr.Markdown("# ThinkLite Chat (Optimized)")
|
| 81 |
-
gr.Markdown("🚀 Версия с потоковым выводом и оптимизацией для CPU")
|
| 82 |
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
yield chat_history
|
| 98 |
-
|
| 99 |
-
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
|
| 100 |
-
bot, chatbot, chatbot
|
| 101 |
-
)
|
| 102 |
-
clear_btn.click(lambda: [], None, chatbot, queue=False)
|
| 103 |
|
| 104 |
if __name__ == "__main__":
|
| 105 |
-
|
|
|
|
| 1 |
from peft import PeftModel
|
| 2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
import gradio as gr
|
|
|
|
| 4 |
|
| 5 |
+
# Загрузка модели и токенизатора
|
| 6 |
base_model = AutoModelForCausalLM.from_pretrained(
|
| 7 |
"Qwen/Qwen2.5-0.5B-Instruct",
|
| 8 |
+
device_map="auto"
|
|
|
|
|
|
|
| 9 |
)
|
|
|
|
|
|
|
| 10 |
model = PeftModel.from_pretrained(base_model, "Locon213/ThinkLite")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct")
|
| 12 |
|
| 13 |
+
# Конфигурация генерации
|
| 14 |
generation_config = GenerationConfig(
|
| 15 |
temperature=0.7,
|
| 16 |
top_p=0.9,
|
| 17 |
top_k=50,
|
| 18 |
+
max_new_tokens=512,
|
| 19 |
repetition_penalty=1.1,
|
| 20 |
do_sample=True
|
| 21 |
)
|
|
|
|
| 27 |
prompt += f"<<<USER>>> {message}\n<<<ASSISTANT>>>"
|
| 28 |
return prompt
|
| 29 |
|
| 30 |
+
def generate_response(message, history):
|
| 31 |
+
# Форматируем промпт с историей чата
|
| 32 |
formatted_prompt = format_prompt(message, history)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
+
# Токенизация и генерация
|
| 35 |
+
inputs = tokenizer(formatted_prompt, return_tensors="pt").to(model.device)
|
| 36 |
+
outputs = model.generate(
|
| 37 |
**inputs,
|
| 38 |
generation_config=generation_config,
|
|
|
|
| 39 |
pad_token_id=tokenizer.eos_token_id
|
| 40 |
)
|
| 41 |
|
| 42 |
+
# Декодирование и извлечение ответа
|
| 43 |
+
response = tokenizer.decode(outputs[0][len(inputs.input_ids[0]):], skip_special_tokens=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
|
| 45 |
+
return response.strip()
|
| 46 |
+
|
| 47 |
+
# Создание чат-интерфейса
|
| 48 |
+
chat_interface = gr.ChatInterface(
|
| 49 |
+
fn=generate_response,
|
| 50 |
+
examples=[
|
| 51 |
+
"Объясни квантовую запутанность простыми словами",
|
| 52 |
+
"Как научиться программировать?",
|
| 53 |
+
"Напиши стихотворение про ИИ"
|
| 54 |
+
],
|
| 55 |
+
title="ThinkLite Chat",
|
| 56 |
+
description="Общайтесь с ThinkLite - адаптированной версией Qwen2.5-0.5B-Instruct",
|
| 57 |
+
theme="soft"
|
| 58 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
|
| 60 |
if __name__ == "__main__":
|
| 61 |
+
chat_interface.launch()
|