Commit
·
d519348
1
Parent(s):
55a67a5
Update app.py
Browse files
app.py
CHANGED
@@ -1,34 +1,25 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import
|
3 |
|
4 |
-
# Load pre-trained
|
5 |
-
|
6 |
-
model = MarianMTModel.from_pretrained(model_name)
|
7 |
-
tokenizer = MarianTokenizer.from_pretrained(model_name)
|
8 |
|
9 |
-
# Define the
|
10 |
-
def
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
translation = model.generate(**inputs)
|
16 |
-
|
17 |
-
# Decode the translated text
|
18 |
-
translated_text = tokenizer.decode(translation[0], skip_special_tokens=True)
|
19 |
-
|
20 |
-
return translated_text
|
21 |
|
22 |
# Create Gradio interface
|
23 |
iface = gr.Interface(
|
24 |
-
fn=
|
25 |
-
inputs=gr.Textbox(),
|
26 |
outputs=gr.Textbox(),
|
27 |
live=True,
|
28 |
-
title="
|
29 |
-
description="
|
30 |
)
|
31 |
|
32 |
# Launch the Gradio app
|
33 |
iface.launch()
|
34 |
-
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
|
4 |
+
# Load pre-trained question-answering model
|
5 |
+
qa_model = pipeline("question-answering", model="distilbert-base-cased-distilled-squad")
|
|
|
|
|
6 |
|
7 |
+
# Define the question-answering function
|
8 |
+
def answer_question(context, question):
|
9 |
+
result = qa_model(context=context, question=question)
|
10 |
+
answer = result["answer"]
|
11 |
+
confidence = result["score"]
|
12 |
+
return f"Answer: {answer}\nConfidence: {confidence:.4f}"
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
# Create Gradio interface
|
15 |
iface = gr.Interface(
|
16 |
+
fn=answer_question,
|
17 |
+
inputs=[gr.Textbox(label="Context"), gr.Textbox(label="Question")],
|
18 |
outputs=gr.Textbox(),
|
19 |
live=True,
|
20 |
+
title="Question Answering System",
|
21 |
+
description="Enter a context and a question, and the model will provide an answer.",
|
22 |
)
|
23 |
|
24 |
# Launch the Gradio app
|
25 |
iface.launch()
|
|