LovnishVerma commited on
Commit
d0f3245
·
verified ·
1 Parent(s): a61b27e

Upload 5 files

Browse files
Files changed (5) hide show
  1. README.md +12 -12
  2. app.py +31 -0
  3. gitattributes +36 -0
  4. requirements.txt +4 -0
  5. training.py +21 -0
README.md CHANGED
@@ -1,12 +1,12 @@
1
- ---
2
- title: Ann
3
- emoji: 🌍
4
- colorFrom: indigo
5
- colorTo: red
6
- sdk: gradio
7
- sdk_version: 5.8.0
8
- app_file: app.py
9
- pinned: false
10
- ---
11
-
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
1
+ ---
2
+ title: Mnist Image Classification
3
+ emoji: 👁
4
+ colorFrom: purple
5
+ colorTo: green
6
+ sdk: gradio
7
+ sdk_version: 5.0.1
8
+ app_file: app.py
9
+ pinned: false
10
+ ---
11
+
12
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
app.py ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import gradio as gr
3
+ from PIL import Image
4
+ from tensorflow import keras
5
+
6
+ model = keras.models.Sequential([
7
+ keras.layers.Flatten(input_shape=(28, 28)), # Diese Schicht nimmt unser 2D-Bild und verwandelt es in ein 1D-Array
8
+ keras.layers.Dense(512, activation='relu'), # Als Nächstes kommen zwei Schichten mit 512 künstlichen Neuronen. Als Funktion wählen wir 'relu' f(x) = max(0,x)
9
+ keras.layers.Dense(512, activation='relu'),
10
+ keras.layers.Dense(10, activation='softmax') # Die letzte Schicht besteht aus 10 Neuronen, die für unsere 10 Zahlen stehen. Die 'softmax' Funktion wandelt die Ergebnisse der vorherigen Schicht in Wahrscheinlichkeiten
11
+ ])
12
+
13
+ model.compile(optimizer=keras.optimizers.Adam(0.001),
14
+ loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
15
+ metrics=[keras.metrics.SparseCategoricalAccuracy()])
16
+
17
+ model.load_weights('./weights/mnist.weights.h5')
18
+
19
+ def classify(input):
20
+ image = np.expand_dims(np.array(Image.fromarray(input['layers'][0]).resize((28,28), resample=Image.Resampling.BILINEAR), dtype=int), axis=0)
21
+ prediction = model.predict(image).tolist()[0]
22
+ return {str(i): float(prediction[i]) for i in range(10)}
23
+
24
+ input_sketchpad = gr.Paint(image_mode="L", brush=gr.components.image_editor.Brush(default_color="rgb(156, 104, 200)"))
25
+ output_lable = gr.Label()
26
+
27
+ gr.Interface(fn=classify,
28
+ inputs=input_sketchpad,
29
+ outputs=output_lable,
30
+ flagging_mode='never',
31
+ theme=gr.themes.Soft()).launch()
gitattributes ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ weights/weights.data-00000-of-00001 filter=lfs diff=lfs merge=lfs -text
requirements.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ numpy
2
+ gradio
3
+ Pillow
4
+ tensorflow
training.py ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from tensorflow import keras
2
+
3
+ (x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()
4
+
5
+ x_train = x_train / 255.0
6
+ x_test = x_test / 255.0
7
+
8
+ model = keras.models.Sequential([
9
+ keras.layers.Flatten(input_shape=(28, 28)), # Diese Schicht nimmt unser 2D-Bild und verwandelt es in ein 1D-Array
10
+ keras.layers.Dense(512, activation='relu'), # Als Nächstes kommen zwei Schichten mit 512 künstlichen Neuronen. Als Funktion wählen wir 'relu' f(x) = max(0,x)
11
+ keras.layers.Dense(512, activation='relu'),
12
+ keras.layers.Dense(10, activation='softmax') # Die letzte Schicht besteht aus 10 Neuronen, die für unsere 10 Zahlen stehen. Die 'softmax' Funktion wandelt die Ergebnisse der vorherigen Schicht in Wahrscheinlichkeiten
13
+ ])
14
+
15
+ model.compile(optimizer=keras.optimizers.Adam(0.001),
16
+ loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
17
+ metrics=[keras.metrics.SparseCategoricalAccuracy()])
18
+
19
+ model.fit(x_train, y_train, validation_data=(x_test, y_test), epochs=6)
20
+
21
+ model.save_weights('./weights/mnist.weights.h5')