Spaces:
Sleeping
Sleeping
Upload 5 files
Browse files- README.md +12 -12
- app.py +31 -0
- gitattributes +36 -0
- requirements.txt +4 -0
- training.py +21 -0
README.md
CHANGED
@@ -1,12 +1,12 @@
|
|
1 |
-
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
-
sdk: gradio
|
7 |
-
sdk_version: 5.
|
8 |
-
app_file: app.py
|
9 |
-
pinned: false
|
10 |
-
---
|
11 |
-
|
12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
+
---
|
2 |
+
title: Mnist Image Classification
|
3 |
+
emoji: 👁
|
4 |
+
colorFrom: purple
|
5 |
+
colorTo: green
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 5.0.1
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
---
|
11 |
+
|
12 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import gradio as gr
|
3 |
+
from PIL import Image
|
4 |
+
from tensorflow import keras
|
5 |
+
|
6 |
+
model = keras.models.Sequential([
|
7 |
+
keras.layers.Flatten(input_shape=(28, 28)), # Diese Schicht nimmt unser 2D-Bild und verwandelt es in ein 1D-Array
|
8 |
+
keras.layers.Dense(512, activation='relu'), # Als Nächstes kommen zwei Schichten mit 512 künstlichen Neuronen. Als Funktion wählen wir 'relu' f(x) = max(0,x)
|
9 |
+
keras.layers.Dense(512, activation='relu'),
|
10 |
+
keras.layers.Dense(10, activation='softmax') # Die letzte Schicht besteht aus 10 Neuronen, die für unsere 10 Zahlen stehen. Die 'softmax' Funktion wandelt die Ergebnisse der vorherigen Schicht in Wahrscheinlichkeiten
|
11 |
+
])
|
12 |
+
|
13 |
+
model.compile(optimizer=keras.optimizers.Adam(0.001),
|
14 |
+
loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
|
15 |
+
metrics=[keras.metrics.SparseCategoricalAccuracy()])
|
16 |
+
|
17 |
+
model.load_weights('./weights/mnist.weights.h5')
|
18 |
+
|
19 |
+
def classify(input):
|
20 |
+
image = np.expand_dims(np.array(Image.fromarray(input['layers'][0]).resize((28,28), resample=Image.Resampling.BILINEAR), dtype=int), axis=0)
|
21 |
+
prediction = model.predict(image).tolist()[0]
|
22 |
+
return {str(i): float(prediction[i]) for i in range(10)}
|
23 |
+
|
24 |
+
input_sketchpad = gr.Paint(image_mode="L", brush=gr.components.image_editor.Brush(default_color="rgb(156, 104, 200)"))
|
25 |
+
output_lable = gr.Label()
|
26 |
+
|
27 |
+
gr.Interface(fn=classify,
|
28 |
+
inputs=input_sketchpad,
|
29 |
+
outputs=output_lable,
|
30 |
+
flagging_mode='never',
|
31 |
+
theme=gr.themes.Soft()).launch()
|
gitattributes
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
weights/weights.data-00000-of-00001 filter=lfs diff=lfs merge=lfs -text
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
numpy
|
2 |
+
gradio
|
3 |
+
Pillow
|
4 |
+
tensorflow
|
training.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from tensorflow import keras
|
2 |
+
|
3 |
+
(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()
|
4 |
+
|
5 |
+
x_train = x_train / 255.0
|
6 |
+
x_test = x_test / 255.0
|
7 |
+
|
8 |
+
model = keras.models.Sequential([
|
9 |
+
keras.layers.Flatten(input_shape=(28, 28)), # Diese Schicht nimmt unser 2D-Bild und verwandelt es in ein 1D-Array
|
10 |
+
keras.layers.Dense(512, activation='relu'), # Als Nächstes kommen zwei Schichten mit 512 künstlichen Neuronen. Als Funktion wählen wir 'relu' f(x) = max(0,x)
|
11 |
+
keras.layers.Dense(512, activation='relu'),
|
12 |
+
keras.layers.Dense(10, activation='softmax') # Die letzte Schicht besteht aus 10 Neuronen, die für unsere 10 Zahlen stehen. Die 'softmax' Funktion wandelt die Ergebnisse der vorherigen Schicht in Wahrscheinlichkeiten
|
13 |
+
])
|
14 |
+
|
15 |
+
model.compile(optimizer=keras.optimizers.Adam(0.001),
|
16 |
+
loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
|
17 |
+
metrics=[keras.metrics.SparseCategoricalAccuracy()])
|
18 |
+
|
19 |
+
model.fit(x_train, y_train, validation_data=(x_test, y_test), epochs=6)
|
20 |
+
|
21 |
+
model.save_weights('./weights/mnist.weights.h5')
|