Spaces:
Sleeping
Sleeping
Commit
·
db4a5d2
1
Parent(s):
72305ce
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import os
|
3 |
+
from werkzeug.utils import secure_filename
|
4 |
+
import cv2
|
5 |
+
import numpy as np
|
6 |
+
from tensorflow.keras.models import load_model
|
7 |
+
from tensorflow.keras.preprocessing import image
|
8 |
+
|
9 |
+
# Load the trained model
|
10 |
+
model = load_model("Bone_fracture_classifier_model.h5")
|
11 |
+
|
12 |
+
# Function to check if the file extension is allowed
|
13 |
+
def allowed_file(filename):
|
14 |
+
return '.' in filename and filename.rsplit('.', 1)[1].lower() in {'jpg', 'jpeg', 'png'}
|
15 |
+
|
16 |
+
# Function to preprocess the image
|
17 |
+
def preprocess_image(file_path):
|
18 |
+
img = image.load_img(file_path, target_size=(200, 200))
|
19 |
+
img_array = image.img_to_array(img)
|
20 |
+
img_array = np.expand_dims(img_array, axis=0)
|
21 |
+
img_array /= 255.0 # Normalize the image
|
22 |
+
return img_array
|
23 |
+
|
24 |
+
def main():
|
25 |
+
st.title("Bone Fracture Detection App")
|
26 |
+
|
27 |
+
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
28 |
+
|
29 |
+
if uploaded_file is not None:
|
30 |
+
# Check if the file extension is allowed
|
31 |
+
if allowed_file(uploaded_file.name):
|
32 |
+
# Display the selected image
|
33 |
+
st.image(uploaded_file, caption="Uploaded Image", use_column_width=True)
|
34 |
+
|
35 |
+
# Save the uploaded image temporarily
|
36 |
+
temp_image_path = "temp_image.jpg"
|
37 |
+
with open(temp_image_path, "wb") as temp_image:
|
38 |
+
temp_image.write(uploaded_file.read())
|
39 |
+
|
40 |
+
# Preprocess the image
|
41 |
+
img_array = preprocess_image(temp_image_path)
|
42 |
+
|
43 |
+
# Make prediction
|
44 |
+
prediction = model.predict(img_array)[0, 0]
|
45 |
+
result = "Broken" if prediction > 0.5 else "Not Broken"
|
46 |
+
|
47 |
+
st.write(f"Prediction: {result}")
|
48 |
+
st.write(f"Confidence: {prediction:.2%}")
|
49 |
+
|
50 |
+
# Remove the temporary image file
|
51 |
+
os.remove(temp_image_path)
|
52 |
+
else:
|
53 |
+
st.warning("Invalid file format. Please upload an image with a valid format (jpg, jpeg, or png).")
|
54 |
+
|
55 |
+
if __name__ == "__main__":
|
56 |
+
main()
|