import pandas as pd import numpy as np import os from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score, classification_report from imblearn.over_sampling import SMOTE from joblib import dump # Load dataset data = pd.read_csv("dia.csv") # Features & Target X = data.drop(columns=["Outcome"]) y = data["Outcome"] # Replace zero values in certain columns (except Pregnancies) cols_with_zero = ["Glucose", "BloodPressure", "SkinThickness", "Insulin", "BMI"] X[cols_with_zero] = X[cols_with_zero].replace(0, np.nan) # Save median values used for imputation medians = X.median().to_dict() # Fill missing with median X = X.fillna(medians) # Train-Test Split X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.2, random_state=42, stratify=y ) # Scale scaler = StandardScaler() X_train_scaled = scaler.fit_transform(X_train) X_test_scaled = scaler.transform(X_test) # Balance dataset with SMOTE sm = SMOTE(random_state=42) X_train_bal, y_train_bal = sm.fit_resample(X_train_scaled, y_train) # Train Random Forest model = RandomForestClassifier(n_estimators=200, random_state=42) model.fit(X_train_bal, y_train_bal) # Evaluation @ Default Threshold 0.5 y_pred = model.predict(X_test_scaled) acc = accuracy_score(y_test, y_pred) print(" Default Threshold Accuracy:", acc) print("\nClassification Report (Threshold=0.5):\n", classification_report(y_test, y_pred)) # Threshold Tuning print("\n Threshold Tuning Results") y_proba = model.predict_proba(X_test_scaled)[:, 1] for thresh in [0.3, 0.4, 0.5, 0.6]: y_pred_thresh = (y_proba >= thresh).astype(int) acc_thresh = accuracy_score(y_test, y_pred_thresh) print(f"\nThreshold = {thresh}") print("Accuracy:", acc_thresh) print(classification_report(y_test, y_pred_thresh, digits=3)) # Save model, scaler & medians os.makedirs("models", exist_ok=True) dump(model, "models/diabetes.sav") dump(scaler, "models/scaler.sav") dump(medians, "models/medians.sav") print("Final Model, Scaler, and Medians saved in 'models/' folder.")