Update app.py
Browse files
app.py
CHANGED
@@ -2,96 +2,135 @@ import streamlit as st
|
|
2 |
import cv2
|
3 |
import numpy as np
|
4 |
import time
|
5 |
-
# Larger title
|
6 |
-
st.markdown("<h1 style='text-align: center;'>Emotion Detection</h1>", unsafe_allow_html=True)
|
7 |
-
|
8 |
-
# Smaller subtitle
|
9 |
-
st.markdown("<h3 style='text-align: center;'>angry, fear, happy, neutral, sad, surprise</h3>", unsafe_allow_html=True)
|
10 |
-
start = time.time()
|
11 |
from keras.models import load_model
|
12 |
-
import tempfile
|
13 |
from PIL import Image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
|
|
15 |
@st.cache_resource
|
16 |
def load_emotion_model():
|
17 |
model = load_model('CNN_Model_acc_75.h5')
|
18 |
return model
|
19 |
|
20 |
-
|
21 |
model = load_emotion_model()
|
22 |
-
|
23 |
-
|
|
|
24 |
emotion_labels = ['angry', 'fear', 'happy', 'neutral', 'sad', 'surprise']
|
|
|
25 |
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
|
26 |
|
27 |
-
|
28 |
def process_frame(frame):
|
|
|
29 |
gray_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
30 |
faces = face_cascade.detectMultiScale(gray_frame, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30))
|
31 |
-
|
32 |
for (x, y, w, h) in faces:
|
33 |
roi_gray = gray_frame[y:y+h, x:x+w]
|
34 |
roi_color = frame[y:y+h, x:x+w]
|
35 |
-
|
36 |
face_roi = cv2.resize(roi_color, (img_shape, img_shape))
|
37 |
face_roi = np.expand_dims(face_roi, axis=0)
|
38 |
face_roi = face_roi / float(img_shape)
|
39 |
predictions = model.predict(face_roi)
|
40 |
emotion = emotion_labels[np.argmax(predictions[0])]
|
41 |
|
|
|
42 |
cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
|
43 |
-
cv2.putText(frame, emotion, (x, y+h), cv2.FONT_HERSHEY_SIMPLEX,
|
44 |
-
|
45 |
return frame
|
46 |
|
47 |
-
#
|
48 |
-
|
49 |
-
|
50 |
-
# ret, frame = video_source.read()
|
51 |
-
# if not ret:
|
52 |
-
# break
|
53 |
-
# frame = process_frame(frame)
|
54 |
-
# st.image(frame, channels="BGR")
|
55 |
-
|
56 |
-
def video_feed(video_source):
|
57 |
-
# Create a placeholder to display the frames
|
58 |
-
frame_placeholder = st.empty() # This placeholder will be used to replace frames in-place
|
59 |
-
|
60 |
-
while True:
|
61 |
-
ret, frame = video_source.read()
|
62 |
-
if not ret:
|
63 |
-
break
|
64 |
-
|
65 |
-
frame = process_frame(frame)
|
66 |
-
|
67 |
-
# Display the frame in the placeholder
|
68 |
-
frame_placeholder.image(frame, channels="BGR", use_column_width=True)
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
# Sidebar for video or image upload
|
73 |
-
upload_choice = st.sidebar.radio("Choose input source", [ "Upload Video", "Upload Image" ,"Camera"])
|
74 |
|
75 |
if upload_choice == "Camera":
|
76 |
-
#
|
77 |
-
|
78 |
-
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
elif upload_choice == "Upload Video":
|
81 |
uploaded_video = st.file_uploader("Upload Video", type=["mp4", "mov", "avi", "mkv", "webm"])
|
82 |
if uploaded_video:
|
83 |
-
# Temporarily save the video to disk
|
84 |
with tempfile.NamedTemporaryFile(delete=False) as tfile:
|
85 |
tfile.write(uploaded_video.read())
|
86 |
video_source = cv2.VideoCapture(tfile.name)
|
87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
elif upload_choice == "Upload Image":
|
90 |
-
uploaded_image = st.file_uploader("Upload Image", type=["png", "jpg", "jpeg"
|
91 |
if uploaded_image:
|
92 |
image = Image.open(uploaded_image)
|
93 |
frame = np.array(image)
|
94 |
frame = process_frame(frame)
|
95 |
-
st.image(frame, caption=
|
96 |
-
|
97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import cv2
|
3 |
import numpy as np
|
4 |
import time
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
from keras.models import load_model
|
|
|
6 |
from PIL import Image
|
7 |
+
from huggingface_hub import HfApi, Repository
|
8 |
+
import os
|
9 |
+
import tempfile
|
10 |
+
|
11 |
+
# Page configuration
|
12 |
+
st.set_page_config(page_title="Emotion Detection", layout="centered")
|
13 |
+
|
14 |
+
# Title and Subtitle
|
15 |
+
st.markdown("<h1 style='text-align: center;'>Emotion Detection</h1>", unsafe_allow_html=True)
|
16 |
+
st.markdown("<h3 style='text-align: center;'>angry, fear, happy, neutral, sad, surprise</h3>", unsafe_allow_html=True)
|
17 |
|
18 |
+
# Load Model
|
19 |
@st.cache_resource
|
20 |
def load_emotion_model():
|
21 |
model = load_model('CNN_Model_acc_75.h5')
|
22 |
return model
|
23 |
|
24 |
+
start_time = time.time()
|
25 |
model = load_emotion_model()
|
26 |
+
st.write(f"Model loaded in {time.time() - start_time:.2f} seconds.")
|
27 |
+
|
28 |
+
# Emotion labels and constants
|
29 |
emotion_labels = ['angry', 'fear', 'happy', 'neutral', 'sad', 'surprise']
|
30 |
+
img_shape = 48
|
31 |
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
|
32 |
|
|
|
33 |
def process_frame(frame):
|
34 |
+
"""Detect faces and predict emotions."""
|
35 |
gray_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
36 |
faces = face_cascade.detectMultiScale(gray_frame, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30))
|
|
|
37 |
for (x, y, w, h) in faces:
|
38 |
roi_gray = gray_frame[y:y+h, x:x+w]
|
39 |
roi_color = frame[y:y+h, x:x+w]
|
|
|
40 |
face_roi = cv2.resize(roi_color, (img_shape, img_shape))
|
41 |
face_roi = np.expand_dims(face_roi, axis=0)
|
42 |
face_roi = face_roi / float(img_shape)
|
43 |
predictions = model.predict(face_roi)
|
44 |
emotion = emotion_labels[np.argmax(predictions[0])]
|
45 |
|
46 |
+
# Draw rectangle and emotion label
|
47 |
cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
|
48 |
+
cv2.putText(frame, emotion, (x, y + h + 20), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 0), 2)
|
|
|
49 |
return frame
|
50 |
|
51 |
+
# Sidebar for input selection
|
52 |
+
st.sidebar.title("Choose Input Source")
|
53 |
+
upload_choice = st.sidebar.radio("Select:", ["Camera", "Upload Video", "Upload Image", "Upload to Hugging Face"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
if upload_choice == "Camera":
|
56 |
+
# Use Streamlit's camera input widget
|
57 |
+
st.sidebar.info("Click a picture to analyze emotion.")
|
58 |
+
picture = st.camera_input("Take a picture")
|
59 |
+
if picture:
|
60 |
+
image = Image.open(picture)
|
61 |
+
frame = np.array(image)
|
62 |
+
frame = process_frame(frame)
|
63 |
+
st.image(frame, caption="Processed Image", use_column_width=True)
|
64 |
|
65 |
elif upload_choice == "Upload Video":
|
66 |
uploaded_video = st.file_uploader("Upload Video", type=["mp4", "mov", "avi", "mkv", "webm"])
|
67 |
if uploaded_video:
|
|
|
68 |
with tempfile.NamedTemporaryFile(delete=False) as tfile:
|
69 |
tfile.write(uploaded_video.read())
|
70 |
video_source = cv2.VideoCapture(tfile.name)
|
71 |
+
frame_placeholder = st.empty()
|
72 |
+
while video_source.isOpened():
|
73 |
+
ret, frame = video_source.read()
|
74 |
+
if not ret:
|
75 |
+
break
|
76 |
+
frame = process_frame(frame)
|
77 |
+
frame_placeholder.image(frame, channels="BGR", use_column_width=True)
|
78 |
+
video_source.release()
|
79 |
|
80 |
elif upload_choice == "Upload Image":
|
81 |
+
uploaded_image = st.file_uploader("Upload Image", type=["png", "jpg", "jpeg"])
|
82 |
if uploaded_image:
|
83 |
image = Image.open(uploaded_image)
|
84 |
frame = np.array(image)
|
85 |
frame = process_frame(frame)
|
86 |
+
st.image(frame, caption="Processed Image", use_column_width=True)
|
87 |
+
|
88 |
+
elif upload_choice == "Upload to Hugging Face":
|
89 |
+
st.sidebar.info("Upload images to the 'known_faces' directory in the Hugging Face repository.")
|
90 |
+
|
91 |
+
# Configure Hugging Face Repository
|
92 |
+
REPO_NAME = "face_emotion_detection2"
|
93 |
+
REPO_ID = "LovnishVerma/" + REPO_NAME
|
94 |
+
hf_token = os.getenv("uploadphoto1") # Set your Hugging Face token as an environment variable
|
95 |
+
|
96 |
+
if not hf_token:
|
97 |
+
st.error("Hugging Face token not found. Please set it as an environment variable named 'HF_TOKEN'.")
|
98 |
+
st.stop()
|
99 |
+
|
100 |
+
# Initialize Hugging Face API
|
101 |
+
api = HfApi()
|
102 |
+
|
103 |
+
def create_hugging_face_repo():
|
104 |
+
"""Create or verify the Hugging Face repository."""
|
105 |
+
try:
|
106 |
+
api.create_repo(repo_id=REPO_ID, repo_type="dataset", token=hf_token, exist_ok=True)
|
107 |
+
st.success(f"Repository '{REPO_NAME}' is ready on Hugging Face!")
|
108 |
+
except Exception as e:
|
109 |
+
st.error(f"Error creating Hugging Face repository: {e}")
|
110 |
+
|
111 |
+
def upload_to_hugging_face(file):
|
112 |
+
"""Upload a file to the Hugging Face repository."""
|
113 |
+
try:
|
114 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file:
|
115 |
+
temp_file.write(file.read())
|
116 |
+
temp_file_path = temp_file.name
|
117 |
+
|
118 |
+
api.upload_file(
|
119 |
+
path_or_fileobj=temp_file_path,
|
120 |
+
path_in_repo=f"known_faces/{os.path.basename(temp_file_path)}",
|
121 |
+
repo_id=REPO_ID,
|
122 |
+
token=hf_token,
|
123 |
+
)
|
124 |
+
st.success("File uploaded successfully to Hugging Face!")
|
125 |
+
except Exception as e:
|
126 |
+
st.error(f"Error uploading file to Hugging Face: {e}")
|
127 |
+
|
128 |
+
# Create the repository if it doesn't exist
|
129 |
+
create_hugging_face_repo()
|
130 |
+
|
131 |
+
# Upload image file
|
132 |
+
hf_uploaded_image = st.file_uploader("Upload Image to Hugging Face", type=["png", "jpg", "jpeg"])
|
133 |
+
if hf_uploaded_image:
|
134 |
+
upload_to_hugging_face(hf_uploaded_image)
|
135 |
+
|
136 |
+
st.sidebar.write("Emotion Labels: Angry, Fear, Happy, Neutral, Sad, Surprise")
|