import streamlit as st import cv2 import numpy as np import time from keras.models import load_model from PIL import Image from huggingface_hub import HfApi, Repository import os import tempfile # Page configuration st.set_page_config(page_title="Emotion Detection", layout="centered") # Title and Subtitle st.markdown("

Emotion Detection

", unsafe_allow_html=True) st.markdown("

angry, fear, happy, neutral, sad, surprise

", unsafe_allow_html=True) # Load Model @st.cache_resource def load_emotion_model(): model = load_model('CNN_Model_acc_75.h5') return model start_time = time.time() model = load_emotion_model() st.write(f"Model loaded in {time.time() - start_time:.2f} seconds.") # Emotion labels and constants emotion_labels = ['angry', 'fear', 'happy', 'neutral', 'sad', 'surprise'] img_shape = 48 face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml') def process_frame(frame): """Detect faces and predict emotions.""" gray_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) faces = face_cascade.detectMultiScale(gray_frame, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30)) for (x, y, w, h) in faces: roi_gray = gray_frame[y:y+h, x:x+w] roi_color = frame[y:y+h, x:x+w] face_roi = cv2.resize(roi_color, (img_shape, img_shape)) face_roi = np.expand_dims(face_roi, axis=0) face_roi = face_roi / float(img_shape) predictions = model.predict(face_roi) emotion = emotion_labels[np.argmax(predictions[0])] # Draw rectangle and emotion label cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2) cv2.putText(frame, emotion, (x, y + h + 20), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 0), 2) return frame # Sidebar for input selection st.sidebar.title("Choose Input Source") upload_choice = st.sidebar.radio("Select:", ["Camera", "Upload Video", "Upload Image", "Upload to Hugging Face"]) if upload_choice == "Camera": # Use Streamlit's camera input widget st.sidebar.info("Click a picture to analyze emotion.") picture = st.camera_input("Take a picture") if picture: image = Image.open(picture) frame = np.array(image) frame = process_frame(frame) st.image(frame, caption="Processed Image", use_column_width=True) elif upload_choice == "Upload Video": uploaded_video = st.file_uploader("Upload Video", type=["mp4", "mov", "avi", "mkv", "webm"]) if uploaded_video: with tempfile.NamedTemporaryFile(delete=False) as tfile: tfile.write(uploaded_video.read()) video_source = cv2.VideoCapture(tfile.name) frame_placeholder = st.empty() while video_source.isOpened(): ret, frame = video_source.read() if not ret: break frame = process_frame(frame) frame_placeholder.image(frame, channels="BGR", use_column_width=True) video_source.release() elif upload_choice == "Upload Image": uploaded_image = st.file_uploader("Upload Image", type=["png", "jpg", "jpeg"]) if uploaded_image: image = Image.open(uploaded_image) frame = np.array(image) frame = process_frame(frame) st.image(frame, caption="Processed Image", use_column_width=True) elif upload_choice == "Upload to Hugging Face": st.sidebar.info("Upload images to the 'known_faces' directory in the Hugging Face repository.") # Configure Hugging Face Repository REPO_NAME = "face_emotion_detection2" REPO_ID = "LovnishVerma/" + REPO_NAME hf_token = os.getenv("uploadphoto1") # Set your Hugging Face token as an environment variable if not hf_token: st.error("Hugging Face token not found. Please set it as an environment variable named 'HF_TOKEN'.") st.stop() # Initialize Hugging Face API api = HfApi() def create_hugging_face_repo(): """Create or verify the Hugging Face repository.""" try: api.create_repo(repo_id=REPO_ID, repo_type="dataset", token=hf_token, exist_ok=True) st.success(f"Repository '{REPO_NAME}' is ready on Hugging Face!") except Exception as e: st.error(f"Error creating Hugging Face repository: {e}") def upload_to_hugging_face(file): """Upload a file to the Hugging Face repository.""" try: with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file: temp_file.write(file.read()) temp_file_path = temp_file.name api.upload_file( path_or_fileobj=temp_file_path, path_in_repo=f"known_faces/{os.path.basename(temp_file_path)}", repo_id=REPO_ID, token=hf_token, ) st.success("File uploaded successfully to Hugging Face!") except Exception as e: st.error(f"Error uploading file to Hugging Face: {e}") # Create the repository if it doesn't exist create_hugging_face_repo() # Upload image file hf_uploaded_image = st.file_uploader("Upload Image to Hugging Face", type=["png", "jpg", "jpeg"]) if hf_uploaded_image: upload_to_hugging_face(hf_uploaded_image) st.sidebar.write("Emotion Labels: Angry, Fear, Happy, Neutral, Sad, Surprise")