import streamlit as st
import cv2
import numpy as np
import time
from keras.models import load_model
from PIL import Image
from huggingface_hub import HfApi, Repository
import os
import tempfile
# Page configuration
st.set_page_config(page_title="Emotion Detection", layout="centered")
# Title and Subtitle
st.markdown("
Emotion Detection
", unsafe_allow_html=True)
st.markdown("angry, fear, happy, neutral, sad, surprise
", unsafe_allow_html=True)
# Load Model
@st.cache_resource
def load_emotion_model():
model = load_model('CNN_Model_acc_75.h5')
return model
start_time = time.time()
model = load_emotion_model()
st.write(f"Model loaded in {time.time() - start_time:.2f} seconds.")
# Emotion labels and constants
emotion_labels = ['angry', 'fear', 'happy', 'neutral', 'sad', 'surprise']
img_shape = 48
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
def process_frame(frame):
"""Detect faces and predict emotions."""
gray_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(gray_frame, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30))
for (x, y, w, h) in faces:
roi_gray = gray_frame[y:y+h, x:x+w]
roi_color = frame[y:y+h, x:x+w]
face_roi = cv2.resize(roi_color, (img_shape, img_shape))
face_roi = np.expand_dims(face_roi, axis=0)
face_roi = face_roi / float(img_shape)
predictions = model.predict(face_roi)
emotion = emotion_labels[np.argmax(predictions[0])]
# Draw rectangle and emotion label
cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
cv2.putText(frame, emotion, (x, y + h + 20), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 0), 2)
return frame
# Sidebar for input selection
st.sidebar.title("Choose Input Source")
upload_choice = st.sidebar.radio("Select:", ["Camera", "Upload Video", "Upload Image", "Upload to Hugging Face"])
if upload_choice == "Camera":
# Use Streamlit's camera input widget
st.sidebar.info("Click a picture to analyze emotion.")
picture = st.camera_input("Take a picture")
if picture:
image = Image.open(picture)
frame = np.array(image)
frame = process_frame(frame)
st.image(frame, caption="Processed Image", use_column_width=True)
elif upload_choice == "Upload Video":
uploaded_video = st.file_uploader("Upload Video", type=["mp4", "mov", "avi", "mkv", "webm"])
if uploaded_video:
with tempfile.NamedTemporaryFile(delete=False) as tfile:
tfile.write(uploaded_video.read())
video_source = cv2.VideoCapture(tfile.name)
frame_placeholder = st.empty()
while video_source.isOpened():
ret, frame = video_source.read()
if not ret:
break
frame = process_frame(frame)
frame_placeholder.image(frame, channels="BGR", use_column_width=True)
video_source.release()
elif upload_choice == "Upload Image":
uploaded_image = st.file_uploader("Upload Image", type=["png", "jpg", "jpeg"])
if uploaded_image:
image = Image.open(uploaded_image)
frame = np.array(image)
frame = process_frame(frame)
st.image(frame, caption="Processed Image", use_column_width=True)
elif upload_choice == "Upload to Hugging Face":
st.sidebar.info("Upload images to the 'known_faces' directory in the Hugging Face repository.")
# Configure Hugging Face Repository
REPO_NAME = "face_emotion_detection2"
REPO_ID = "LovnishVerma/" + REPO_NAME
hf_token = os.getenv("uploadphoto1") # Set your Hugging Face token as an environment variable
if not hf_token:
st.error("Hugging Face token not found. Please set it as an environment variable named 'HF_TOKEN'.")
st.stop()
# Initialize Hugging Face API
api = HfApi()
def create_hugging_face_repo():
"""Create or verify the Hugging Face repository."""
try:
api.create_repo(repo_id=REPO_ID, repo_type="dataset", token=hf_token, exist_ok=True)
st.success(f"Repository '{REPO_NAME}' is ready on Hugging Face!")
except Exception as e:
st.error(f"Error creating Hugging Face repository: {e}")
def upload_to_hugging_face(file):
"""Upload a file to the Hugging Face repository."""
try:
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file:
temp_file.write(file.read())
temp_file_path = temp_file.name
api.upload_file(
path_or_fileobj=temp_file_path,
path_in_repo=f"known_faces/{os.path.basename(temp_file_path)}",
repo_id=REPO_ID,
token=hf_token,
)
st.success("File uploaded successfully to Hugging Face!")
except Exception as e:
st.error(f"Error uploading file to Hugging Face: {e}")
# Create the repository if it doesn't exist
create_hugging_face_repo()
# Upload image file
hf_uploaded_image = st.file_uploader("Upload Image to Hugging Face", type=["png", "jpg", "jpeg"])
if hf_uploaded_image:
upload_to_hugging_face(hf_uploaded_image)
st.sidebar.write("Emotion Labels: Angry, Fear, Happy, Neutral, Sad, Surprise")