Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,9 +1,9 @@
|
|
1 |
#############################################################################################################################
|
2 |
# Filename : app.py
|
3 |
# Description: A Streamlit application to detect facial expressions from images and provide responses.
|
4 |
-
# Author :
|
5 |
#
|
6 |
-
# Copyright © 2024 by
|
7 |
#############################################################################################################################
|
8 |
|
9 |
# Import libraries.
|
@@ -50,15 +50,17 @@ def query_emotion(image):
|
|
50 |
return predicted_label
|
51 |
|
52 |
#############################################################################################################################
|
53 |
-
# Function to generate a response using OpenAI based on detected emotion.
|
54 |
-
def generate_text_based_on_mood(emotion):
|
55 |
try:
|
56 |
-
|
57 |
-
|
58 |
-
|
|
|
|
|
59 |
# Call OpenAI's API using GPT-4.
|
60 |
response = openai.ChatCompletion.create(
|
61 |
-
model="gpt-4", # Specify the GPT-4 model
|
62 |
messages=[
|
63 |
{"role": "user", "content": prompt}
|
64 |
]
|
@@ -89,7 +91,7 @@ def text_to_speech(text):
|
|
89 |
# Main function to create the Streamlit web application.
|
90 |
def main():
|
91 |
st.title("Facial Expression Mood Detector")
|
92 |
-
st.write("Upload an image of a face to detect mood and receive
|
93 |
|
94 |
# Upload image.
|
95 |
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
@@ -103,17 +105,21 @@ def main():
|
|
103 |
emotion = query_emotion(image)
|
104 |
st.write(f"Detected emotion: {emotion}")
|
105 |
|
106 |
-
#
|
107 |
-
|
108 |
-
|
109 |
-
|
|
|
|
|
|
|
|
|
110 |
|
111 |
-
|
112 |
-
|
113 |
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
|
118 |
#############################################################################################################################
|
119 |
# Run the application.
|
|
|
1 |
#############################################################################################################################
|
2 |
# Filename : app.py
|
3 |
# Description: A Streamlit application to detect facial expressions from images and provide responses.
|
4 |
+
# Author : [Your Name]
|
5 |
#
|
6 |
+
# Copyright © 2024 by [Your Name]
|
7 |
#############################################################################################################################
|
8 |
|
9 |
# Import libraries.
|
|
|
50 |
return predicted_label
|
51 |
|
52 |
#############################################################################################################################
|
53 |
+
# Function to generate a response using OpenAI based on detected emotion and user preference.
|
54 |
+
def generate_text_based_on_mood(emotion, response_type):
|
55 |
try:
|
56 |
+
if response_type == "Joke":
|
57 |
+
prompt = f"Generate a light-hearted joke for someone who is feeling {emotion}."
|
58 |
+
else: # Motivational Message
|
59 |
+
prompt = f"Generate a motivational message for someone who is feeling {emotion}."
|
60 |
+
|
61 |
# Call OpenAI's API using GPT-4.
|
62 |
response = openai.ChatCompletion.create(
|
63 |
+
model="gpt-4", # Specify the GPT-4 model
|
64 |
messages=[
|
65 |
{"role": "user", "content": prompt}
|
66 |
]
|
|
|
91 |
# Main function to create the Streamlit web application.
|
92 |
def main():
|
93 |
st.title("Facial Expression Mood Detector")
|
94 |
+
st.write("Upload an image of a face to detect mood and receive a response.")
|
95 |
|
96 |
# Upload image.
|
97 |
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
|
|
105 |
emotion = query_emotion(image)
|
106 |
st.write(f"Detected emotion: {emotion}")
|
107 |
|
108 |
+
# Dropdown for selecting response type.
|
109 |
+
response_type = st.selectbox("Select the type of response:", ["Joke", "Motivational Message"])
|
110 |
+
|
111 |
+
# Generate text based on detected emotion and user preference.
|
112 |
+
if st.button("Get Response"):
|
113 |
+
message = generate_text_based_on_mood(emotion, response_type)
|
114 |
+
st.write("Here's your response:")
|
115 |
+
st.write(message)
|
116 |
|
117 |
+
# Convert the generated message to audio.
|
118 |
+
audio_file = text_to_speech(message)
|
119 |
|
120 |
+
# Provide an audio player in the Streamlit app if audio file exists.
|
121 |
+
if audio_file:
|
122 |
+
st.audio(audio_file) # Streamlit will handle playback.
|
123 |
|
124 |
#############################################################################################################################
|
125 |
# Run the application.
|