File size: 8,547 Bytes
01e3654
 
 
 
 
 
87357ad
1f3b611
01e3654
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f3b611
01e3654
 
1f3b611
 
 
 
 
 
 
fb5d2a5
1f3b611
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15cfec8
1f3b611
 
 
 
 
 
 
fb5d2a5
1f3b611
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01e3654
 
 
 
 
 
 
 
 
 
 
 
 
87357ad
 
 
 
01e3654
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f3b611
635e75f
01e3654
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import gradio as gr
import pandas as pd
import numpy as np
from sklearn.preprocessing import PolynomialFeatures
import statsmodels.api as sm
import scipy.optimize as opt
import csv
import os

# Global state
data_df     = None
poly        = None
model_power = None
model_er    = None

def hex_to_int(x):
    """Safely parse a hex string (with or without '0x') to int."""
    try:
        return int(str(x).strip(), 16)
    except:
        return np.nan

# Panel 1: Load & Preview
def load_and_preview(file, n):
    if file is None:
        # Hide the preview until we have data
        return gr.update(visible=False), "▶️ Please upload an .xlsx or .csv file"
    global data_df
    try:
        filename = file.name
        ext = os.path.splitext(filename)[1].lower()
        if ext in ['.xlsx', '.xls']:
            # Excel format
            xls = pd.ExcelFile(filename)
            rows = []
            for sheet in xls.sheet_names:
                if sheet.startswith("T3"):
                    df = pd.read_excel(xls, sheet_name=sheet, header=None)
                    h0 = df.iloc[1].ffill()
                    h1 = df.iloc[2].fillna("")
                    cols = [
                        (f"{a} {b}".strip() if b else str(a).strip())
                        for a, b in zip(h0, h1)
                    ]
                    df.columns = cols

                    raw = df.iloc[3:][
                        ["Setting Power", "Setting ER", "EA-4000 Power", "EA-4000 ER"]
                    ].copy()
                    raw["Setting Power"] = raw["Setting Power"].ffill()
                    raw["power_hex"]     = raw["Setting Power"]
                    raw["er_hex"]        = raw["Setting ER"]
                    raw["power_dec"] = raw["power_hex"].apply(hex_to_int)
                    raw["er_dec"]    = raw["er_hex"].apply(hex_to_int)
                    raw["power_meas"] = pd.to_numeric(raw["EA-4000 Power"], errors="coerce")
                    raw["er_meas"]    = pd.to_numeric(raw["EA-4000 ER"],    errors="coerce")
                    raw["Device"]     = sheet
                    valid = raw[raw["power_meas"].notna()]

                    rows.append(valid[[
                        "Device","power_hex","er_hex",
                        "power_dec","er_dec","power_meas","er_meas"
                    ]])
            if not rows:
                raise ValueError("No valid sheets (prefix 'T3') found in Excel file.")
            data_df = pd.concat(rows, ignore_index=True)
        elif ext == '.csv':
            # CSV format (exported)
            df = pd.read_csv(filename, quoting=csv.QUOTE_ALL, escapechar='\\')
            required = {"Device","power_hex","er_hex","power_dec","er_dec","power_meas","er_meas"}
            if not required.issubset(df.columns):
                missing = required - set(df.columns)
                raise ValueError(f"CSV missing required columns: {missing}")
            data_df = df.copy()
            # ensure proper types
            data_df['power_dec']  = data_df['power_hex'].apply(hex_to_int)
            data_df['er_dec']     = data_df['er_hex'].apply(hex_to_int)
            data_df['power_meas'] = pd.to_numeric(data_df['power_meas'], errors='coerce')
            data_df['er_meas']    = pd.to_numeric(data_df['er_meas'],    errors='coerce')
        else:
            raise ValueError(f"Unsupported file type: {ext}")

        preview_df = data_df.head(int(n))
        # Un-hide and populate the preview grid
        return gr.update(value=preview_df, visible=True), "✅ Data loaded successfully"
    except Exception as e:
        # On error, keep it hidden
        return gr.update(visible=False), f"❌ {e}"

def export_csv():
    """Export the loaded training dataset to CSV for inspection."""
    global data_df
    if data_df is None:
        return gr.update(visible=False, value=None)
    path = "training_data.csv"
    # wrap every field in double-quotes so Excel won’t re-interpret it
    data_df.to_csv(path, index=False,
                  quoting=csv.QUOTE_ALL,
                  escapechar='\\')
    return gr.update(visible=True, value=path)

# Panel 2: Train Hierarchical Quadratic RSM
def train_model():
    global poly, model_power, model_er, data_df
    if data_df is None:
        return "❌ No data loaded"

    X   = data_df[["power_dec", "er_dec"]].values
    y_p = data_df["power_meas"].values
    y_e = data_df["er_meas"].values
    groups = data_df["Device"]

    poly = PolynomialFeatures(degree=2, include_bias=True)
    Xp   = poly.fit_transform(X)

    model_power = sm.MixedLM(endog=y_p, exog=Xp, groups=groups).fit()
    model_er    = sm.MixedLM(endog=y_e, exog=Xp, groups=groups).fit()

    pred_p = model_power.fittedvalues
    pred_e = model_er.fittedvalues
    r2p    = 1 - np.sum((y_p - pred_p)**2)/np.sum((y_p - y_p.mean())**2)
    r2e    = 1 - np.sum((y_e - pred_e)**2)/np.sum((y_e - y_e.mean())**2)
    rmse_p = np.sqrt(np.mean((y_p - pred_p)**2))
    rmse_e = np.sqrt(np.mean((y_e - pred_e)**2))

    return (
        f"✅ Trained hierarchical quadratic RSM\n"
        f"Power → R²={r2p:.3f}, RMSE={rmse_p:.3f}\n"
        f"ER    → R²={r2e:.3f}, RMSE={rmse_e:.3f}"
    )

# Panel 3: Calibrate & Predict
def calibrate_and_predict(calib_df, tp, te):
    global poly, model_power, model_er, data_df
    if poly is None:
        return {"error": "Model not trained"}

    df = calib_df  # already a pandas DataFrame
    samples = []
    for _, r in df.iterrows():
        phex = hex_to_int(r["power_hex"])
        ehex = hex_to_int(r["er_hex"])
        pm   = pd.to_numeric(r["power_meas"], errors="coerce")
        em   = pd.to_numeric(r["er_meas"],   errors="coerce")
        if not np.isnan(phex) and not np.isnan(ehex) and not np.isnan(pm) and not np.isnan(em):
            samples.append((phex, ehex, pm, em))

    if samples:
        Xc   = np.array([[p,e] for p,e,_,_ in samples])
        Xcp  = poly.transform(Xc)
        pred_p = model_power.predict(exog=Xcp)
        pred_e = model_er   .predict(exog=Xcp)
        offset_p = float(np.mean([pm - p for (_,_,pm,_), p in zip(samples, pred_p)]))
        offset_e = float(np.mean([em - e for (_,_,_,em), e in zip(samples, pred_e)]))
    else:
        offset_p = offset_e = 0.0

    p_min, p_max = int(data_df["power_dec"].min()), int(data_df["power_dec"].max())
    e_min, e_max = int(data_df["er_dec"].min()),     int(data_df["er_dec"].max())

    def obj(vars):
        x  = np.array(vars).reshape(1, -1)
        xp = poly.transform(x)
        p0 = model_power.predict(exog=xp)[0] + offset_p
        e0 = model_er   .predict(exog=xp)[0] + offset_e
        return (p0 - tp)**2 + (e0 - te)**2

    res = opt.minimize(
        obj,
        x0=[(p_min+p_max)/2, (e_min+e_max)/2],
        bounds=[(p_min, p_max), (e_min, e_max)]
    )
    ph, eh = map(int, np.round(res.x))

    return {
        "Power Setting (hex)": hex(ph),
        "ER Setting (hex)"   : hex(eh)
    }


with gr.Blocks() as demo:
    gr.Markdown("# Power and ER Calibration APP")

    with gr.Tab("1. Load Data"):
        file_in  = gr.File(label="Upload .xlsx or .csv")
        n_slider = gr.Slider(1, 2000, value=99, step=1, label="Rows to preview")
        preview  = gr.DataFrame(visible=False)
        status   = gr.Textbox()

        file_in.change(
            fn=load_and_preview,
            inputs=[file_in, n_slider],
            outputs=[preview, status]
        )

        export_btn = gr.Button("Export Training Dataset (CSV)")
        csv_file   = gr.File(label="Download CSV", visible=False)
        export_btn.click(
            fn=export_csv,
            inputs=None,
            outputs=csv_file
        )

    with gr.Tab("2. Train Model"):
        train_btn = gr.Button("Train RSM")
        train_out = gr.Textbox()
        train_btn.click(fn=train_model, inputs=None, outputs=train_out)

    with gr.Tab("3. Calibrate & Predict"):
        gr.Markdown("**Enter up to 5 calibration samples and target values**")
        calib_df = gr.DataFrame(
            headers=["power_hex", "er_hex", "power_meas", "er_meas"],
            row_count=5, col_count=4, interactive=True
        )
        tp       = gr.Number(value=2.5,  label="Target Power (dec)")
        te       = gr.Number(value=12.75, label="Target ER (dec)")
        pred_btn = gr.Button("Predict Settings")
        pred_out = gr.JSON(label="Predicted Settings")
        pred_btn.click(
            fn=calibrate_and_predict,
            inputs=[calib_df, tp, te],
            outputs=[pred_out]
        )

    demo.launch()