import spaces import subprocess # Install flash attention, skipping CUDA build if necessary subprocess.run( "pip install flash-attn --no-build-isolation", env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"}, shell=True, ) import time import logging import gradio as gr import cv2 import os from transformers import AutoProcessor, AutoModelForImageTextToText import torch from PIL import Image # Cache for loaded model and processor default_cache = {'model_id': None, 'processor': None, 'model': None, 'device': None} model_cache = default_cache.copy() # Check for XPU availability has_xpu = hasattr(torch, 'xpu') and torch.xpu.is_available() def update_model(model_id, device): if model_cache['model_id'] != model_id or model_cache['device'] != device: logging.info(f'Loading model {model_id} on {device}') processor = AutoProcessor.from_pretrained(model_id) # Load model with appropriate precision for each device if device == 'cuda': # Use bfloat16 for CUDA for performance model = AutoModelForImageTextToText.from_pretrained( model_id, torch_dtype=torch.bfloat16, _attn_implementation='flash_attention_2' ).to('cuda') elif device == 'xpu' and has_xpu: # Use float32 on XPU to avoid bfloat16 layernorm issues model = AutoModelForImageTextToText.from_pretrained( model_id, torch_dtype=torch.float32 ).to('xpu') else: # Default to float32 on CPU model = AutoModelForImageTextToText.from_pretrained(model_id).to('cpu') model.eval() model_cache.update({'model_id': model_id, 'processor': processor, 'model': model, 'device': device}) @spaces.GPU def caption_frame(frame, model_id, interval_ms, sys_prompt, usr_prompt, device): debug_msgs = [] update_model(model_id, device) processor = model_cache['processor'] model = model_cache['model'] # Control capture interval time.sleep(interval_ms / 1000) # Preprocess frame t0 = time.time() rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) pil_img = Image.fromarray(rgb) temp_path = 'frame.jpg' pil_img.save(temp_path, format='JPEG', quality=50) debug_msgs.append(f'Preprocess: {int((time.time()-t0)*1000)} ms') # Prepare multimodal chat messages messages = [ {'role': 'system', 'content': [{'type': 'text', 'text': sys_prompt}]}, {'role': 'user', 'content': [ {'type': 'image', 'url': temp_path}, {'type': 'text', 'text': usr_prompt} ]} ] # Tokenize and encode t1 = time.time() inputs = processor.apply_chat_template( messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors='pt' ) # Move inputs to correct device and dtype (matching model parameters) param_dtype = next(model.parameters()).dtype cast_inputs = {} for k, v in inputs.items(): if isinstance(v, torch.Tensor): if v.dtype.is_floating_point: # cast floating-point tensors to model's parameter dtype cast_inputs[k] = v.to(device=model.device, dtype=param_dtype) else: # move integer/mask tensors without changing dtype cast_inputs[k] = v.to(device=model.device) else: cast_inputs[k] = v inputs = cast_inputs debug_msgs.append(f'Tokenize: {int((time.time()-t1)*1000)} ms') # Inference t2 = time.time() outputs = model.generate(**inputs, do_sample=False, max_new_tokens=128) debug_msgs.append(f'Inference: {int((time.time()-t2)*1000)} ms') # Decode and strip history t3 = time.time() raw = processor.batch_decode(outputs, skip_special_tokens=True)[0] debug_msgs.append(f'Decode: {int((time.time()-t3)*1000)} ms') if "Assistant:" in raw: caption = raw.split("Assistant:")[-1].strip() else: lines = raw.splitlines() caption = lines[-1].strip() if len(lines) > 1 else raw.strip() return caption, '\n'.join(debug_msgs) def main(): logging.basicConfig(level=logging.INFO) model_choices = [ 'HuggingFaceTB/SmolVLM2-256M-Video-Instruct', 'HuggingFaceTB/SmolVLM2-500M-Video-Instruct', 'HuggingFaceTB/SmolVLM2-2.2B-Instruct' ] # Determine available devices device_options = ['cpu'] if torch.cuda.is_available(): device_options.append('cuda') if has_xpu: device_options.append('xpu') default_device = 'cuda' if torch.cuda.is_available() else ('xpu' if has_xpu else 'cpu') with gr.Blocks() as demo: gr.Markdown('## 🎥 Real-Time Webcam Captioning with SmolVLM2 (Transformers)') with gr.Row(): model_dd = gr.Dropdown(model_choices, value=model_choices[0], label='Model ID') device_dd = gr.Dropdown(device_options, value=default_device, label='Device') interval = gr.Slider(100, 20000, step=100, value=3000, label='Interval (ms)') sys_p = gr.Textbox(lines=2, value='Describe the key action', label='System Prompt') usr_p = gr.Textbox(lines=1, value='What is happening in this image?', label='User Prompt') cam = gr.Image(sources=['webcam'], streaming=True, label='Webcam Feed') caption_tb = gr.Textbox(interactive=False, label='Caption') log_tb = gr.Textbox(lines=4, interactive=False, label='Debug Log') cam.stream( fn=caption_frame, inputs=[cam, model_dd, interval, sys_p, usr_p, device_dd], outputs=[caption_tb, log_tb], time_limit=600 ) # Enable Gradio's async event queue to register callback IDs and prevent KeyErrors demo.queue() # Launch the app demo.launch() if __name__ == '__main__': main()