MGTD-Demo / app.py
minemaster01's picture
Update app.py
136a2a9 verified
import gradio as gr
import os
import json
import uuid
import torch
import datetime
import torch.nn as nn
from transformers import AutoTokenizer, AutoModel, AutoConfig
from huggingface_hub import HfApi, create_repo, hf_hub_download
from torchcrf import CRF
# Constants
HF_DATASET_REPO = "M2ai/mgtd-logs"
HF_TOKEN = os.getenv("Mgtd")
DATASET_CREATED = False
# Model identifiers
code = "ENG"
pntr = 2
model_name_or_path = "microsoft/mdeberta-v3-base"
hf_token = os.environ.get("Mgtd")
# Download model checkpoint
file_path = hf_hub_download(repo_id="1024m/MGTD-Long-New",filename=f"{code}/mdeberta-epoch-{pntr}.pt",token=hf_token,local_dir="./checkpoints")
def setup_hf_dataset():
global DATASET_CREATED
if not DATASET_CREATED and HF_TOKEN:
try:
create_repo(HF_DATASET_REPO, repo_type="dataset", token=HF_TOKEN, exist_ok=True)
DATASET_CREATED = True
print(f"Dataset {HF_DATASET_REPO} is ready.")
except Exception as e:
print(f"Error setting up dataset: {e}")
class AutoModelCRF(nn.Module):
def __init__(self, model_name_or_path, dropout=0.075):
super().__init__()
self.config = AutoConfig.from_pretrained(model_name_or_path)
self.num_labels = 2
self.encoder = AutoModel.from_pretrained(model_name_or_path, trust_remote_code=True, config=self.config)
self.dropout = nn.Dropout(dropout)
self.linear = nn.Linear(self.config.hidden_size, self.num_labels)
self.crf = CRF(self.num_labels, batch_first=True)
def forward(self, input_ids, attention_mask):
outputs = self.encoder(input_ids=input_ids, attention_mask=attention_mask)
seq_output = self.dropout(outputs[0])
emissions = self.linear(seq_output)
tags = self.crf.decode(emissions, attention_mask.byte())
return tags, emissions
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
model = AutoModelCRF(model_name_or_path)
checkpoint = torch.load(file_path, map_location="cpu")
model.load_state_dict(checkpoint.get("model_state_dict", checkpoint), strict=False)
model = model.to(device)
model.eval()
def get_color(prob):
if prob < 0.25:
return "green"
elif prob < 0.5:
return "yellow"
elif prob < 0.75:
return "orange"
else:
return "red"
def get_word_probabilities(text):
text = " ".join(text.split(" ")[:2048])
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
inputs = {k: v.to(device) for k, v in inputs.items()}
tokens = tokenizer.convert_ids_to_tokens(inputs["input_ids"][0])
with torch.no_grad():
tags, emission = model(input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"])
probs = torch.softmax(emission, dim=-1)[0, :, 1].cpu().numpy()
word_probs = []
word_colors = []
current_word = ""
current_probs = []
for token, prob in zip(tokens, probs):
if token in ["<s>", "</s>"]:
continue
if token.startswith("▁"):
if current_word and current_probs:
current_prob = sum(current_probs) / len(current_probs)
word_probs.append(current_prob)
color = get_color(current_prob)
word_colors.append(color)
current_word = token[1:] if token != "▁" else ""
current_probs = [prob]
else:
current_word += token
current_probs.append(prob)
if current_word and current_probs:
current_prob = sum(current_probs) / len(current_probs)
word_probs.append(current_prob)
color = get_color(current_prob)
word_colors.append(color)
####### FOR STABLE OUTPUTS
first_avg = (word_probs[1] + word_probs[2]) / 2
word_colors[0] = get_color(first_avg)
last_avg = (word_probs[-2] + word_probs[-3]) / 2
word_colors[-1] = get_color(last_avg)
#########
word_probs = [float(p) for p in word_probs]
return word_probs, word_colors
def infer_and_log(text_input):
word_probs, word_colors = get_word_probabilities(text_input)
timestamp = datetime.datetime.now().isoformat()
submission_id = str(uuid.uuid4())
log_data = {"id": submission_id,"timestamp": timestamp,"input": text_input,"output_probs": word_probs}
os.makedirs("logs", exist_ok=True)
log_file = f"logs/{timestamp.replace(':', '_')}.json"
with open(log_file, "w") as f:
json.dump(log_data, f, indent=2)
if HF_TOKEN and DATASET_CREATED:
try:
HfApi().upload_file(path_or_fileobj=log_file,path_in_repo=f"logs/{os.path.basename(log_file)}",repo_id=HF_DATASET_REPO,repo_type="dataset",token=HF_TOKEN)
print(f"Uploaded log {submission_id}")
except Exception as e:
print(f"Error uploading log: {e}")
tokens = text_input.split()
formatted_output = " ".join(f'<span style= "color:{color}">{token}</span>' for token, color in zip(tokens, word_colors))
return formatted_output, word_probs
def clear_fields():
return "", "", {}
setup_hf_dataset()
with gr.Blocks() as app:
gr.Markdown("Machine Generated Text Detector")
with gr.Row():
input_box = gr.Textbox(label="Input Text", lines=10)
output_html = gr.HTML(label="Color-Coded Output")
output_json = gr.JSON(label="Word Probabilities",visible=False)
with gr.Row():
submit_btn = gr.Button("Submit")
clear_btn = gr.Button("Clear")
submit_btn.click(fn=infer_and_log, inputs=input_box, outputs=[output_html, output_json])
clear_btn.click(fn=clear_fields, outputs=[input_box, output_html, output_json])
if __name__ == "__main__":
app.launch()