Update app.py
Browse files
app.py
CHANGED
|
@@ -405,7 +405,6 @@
|
|
| 405 |
|
| 406 |
# if __name__ == "__main__":
|
| 407 |
# demo.launch()
|
| 408 |
-
|
| 409 |
import gradio as gr
|
| 410 |
import pandas as pd
|
| 411 |
from datasets import load_dataset
|
|
@@ -1278,9 +1277,9 @@ with gr.Blocks(
|
|
| 1278 |
ranking_method = gr.Radio(
|
| 1279 |
["Combined Score (WER 70%, CER 30%)", "WER Only", "CER Only"],
|
| 1280 |
label="π Ranking Method",
|
| 1281 |
-
value="Combined Score (WER 70%, CER 30%)"
|
| 1282 |
-
info="Choose how to rank the models"
|
| 1283 |
)
|
|
|
|
| 1284 |
|
| 1285 |
leaderboard_view = gr.DataFrame(
|
| 1286 |
value=initial_leaderboard,
|
|
@@ -1347,23 +1346,23 @@ with gr.Blocks(
|
|
| 1347 |
with gr.Column(scale=2):
|
| 1348 |
model_name_input = gr.Textbox(
|
| 1349 |
label="π€ Model Name",
|
| 1350 |
-
placeholder="e.g., MALIBA-AI/bambara-whisper-large"
|
| 1351 |
-
info="Use a descriptive name (organization/model format preferred)"
|
| 1352 |
)
|
|
|
|
| 1353 |
|
| 1354 |
model_type = gr.Dropdown(
|
| 1355 |
label="π·οΈ Model Type",
|
| 1356 |
choices=["Whisper-based", "Wav2Vec2", "Foundation", "Custom", "Fine-tuned", "Multilingual", "Other"],
|
| 1357 |
-
value="Custom"
|
| 1358 |
-
info="Select the type/architecture of your model"
|
| 1359 |
)
|
|
|
|
| 1360 |
|
| 1361 |
origin_country = gr.Dropdown(
|
| 1362 |
label="π Origin/Institution",
|
| 1363 |
choices=["Mali", "Senegal", "Burkina Faso", "Niger", "Guinea", "Ivory Coast", "USA", "France", "Canada", "UK", "Other"],
|
| 1364 |
-
value="Mali"
|
| 1365 |
-
info="Country or region of the developing institution"
|
| 1366 |
)
|
|
|
|
| 1367 |
|
| 1368 |
with gr.Column(scale=1):
|
| 1369 |
gr.Markdown("""
|
|
@@ -1383,9 +1382,9 @@ with gr.Blocks(
|
|
| 1383 |
|
| 1384 |
csv_upload = gr.File(
|
| 1385 |
label="π Upload Predictions CSV",
|
| 1386 |
-
file_types=[".csv"]
|
| 1387 |
-
info="Upload your model's transcriptions in the required CSV format"
|
| 1388 |
)
|
|
|
|
| 1389 |
|
| 1390 |
submit_btn = gr.Button("π Submit Model", variant="primary", size="lg", elem_classes=['gradio-button', 'primary'])
|
| 1391 |
|
|
@@ -1420,14 +1419,15 @@ with gr.Blocks(
|
|
| 1420 |
|
| 1421 |
model_1_dropdown = gr.Dropdown(
|
| 1422 |
choices=model_names,
|
| 1423 |
-
label="π€ Model 1"
|
| 1424 |
-
info="Select the first model for comparison"
|
| 1425 |
)
|
|
|
|
|
|
|
| 1426 |
model_2_dropdown = gr.Dropdown(
|
| 1427 |
choices=model_names,
|
| 1428 |
-
label="π€ Model 2"
|
| 1429 |
-
info="Select the second model for comparison"
|
| 1430 |
)
|
|
|
|
| 1431 |
|
| 1432 |
compare_btn = gr.Button("β‘ Compare Models", variant="primary", elem_classes=['gradio-button', 'primary'])
|
| 1433 |
|
|
|
|
| 405 |
|
| 406 |
# if __name__ == "__main__":
|
| 407 |
# demo.launch()
|
|
|
|
| 408 |
import gradio as gr
|
| 409 |
import pandas as pd
|
| 410 |
from datasets import load_dataset
|
|
|
|
| 1277 |
ranking_method = gr.Radio(
|
| 1278 |
["Combined Score (WER 70%, CER 30%)", "WER Only", "CER Only"],
|
| 1279 |
label="π Ranking Method",
|
| 1280 |
+
value="Combined Score (WER 70%, CER 30%)"
|
|
|
|
| 1281 |
)
|
| 1282 |
+
gr.Markdown("*Choose how to rank the models*")
|
| 1283 |
|
| 1284 |
leaderboard_view = gr.DataFrame(
|
| 1285 |
value=initial_leaderboard,
|
|
|
|
| 1346 |
with gr.Column(scale=2):
|
| 1347 |
model_name_input = gr.Textbox(
|
| 1348 |
label="π€ Model Name",
|
| 1349 |
+
placeholder="e.g., MALIBA-AI/bambara-whisper-large"
|
|
|
|
| 1350 |
)
|
| 1351 |
+
gr.Markdown("*Use a descriptive name (organization/model format preferred)*")
|
| 1352 |
|
| 1353 |
model_type = gr.Dropdown(
|
| 1354 |
label="π·οΈ Model Type",
|
| 1355 |
choices=["Whisper-based", "Wav2Vec2", "Foundation", "Custom", "Fine-tuned", "Multilingual", "Other"],
|
| 1356 |
+
value="Custom"
|
|
|
|
| 1357 |
)
|
| 1358 |
+
gr.Markdown("*Select the type/architecture of your model*")
|
| 1359 |
|
| 1360 |
origin_country = gr.Dropdown(
|
| 1361 |
label="π Origin/Institution",
|
| 1362 |
choices=["Mali", "Senegal", "Burkina Faso", "Niger", "Guinea", "Ivory Coast", "USA", "France", "Canada", "UK", "Other"],
|
| 1363 |
+
value="Mali"
|
|
|
|
| 1364 |
)
|
| 1365 |
+
gr.Markdown("*Country or region of the developing institution*")
|
| 1366 |
|
| 1367 |
with gr.Column(scale=1):
|
| 1368 |
gr.Markdown("""
|
|
|
|
| 1382 |
|
| 1383 |
csv_upload = gr.File(
|
| 1384 |
label="π Upload Predictions CSV",
|
| 1385 |
+
file_types=[".csv"]
|
|
|
|
| 1386 |
)
|
| 1387 |
+
gr.Markdown("*Upload your model's transcriptions in the required CSV format*")
|
| 1388 |
|
| 1389 |
submit_btn = gr.Button("π Submit Model", variant="primary", size="lg", elem_classes=['gradio-button', 'primary'])
|
| 1390 |
|
|
|
|
| 1419 |
|
| 1420 |
model_1_dropdown = gr.Dropdown(
|
| 1421 |
choices=model_names,
|
| 1422 |
+
label="π€ Model 1"
|
|
|
|
| 1423 |
)
|
| 1424 |
+
gr.Markdown("*Select the first model for comparison*")
|
| 1425 |
+
|
| 1426 |
model_2_dropdown = gr.Dropdown(
|
| 1427 |
choices=model_names,
|
| 1428 |
+
label="π€ Model 2"
|
|
|
|
| 1429 |
)
|
| 1430 |
+
gr.Markdown("*Select the second model for comparison*")
|
| 1431 |
|
| 1432 |
compare_btn = gr.Button("β‘ Compare Models", variant="primary", elem_classes=['gradio-button', 'primary'])
|
| 1433 |
|