Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -405,7 +405,6 @@
|
|
405 |
|
406 |
# if __name__ == "__main__":
|
407 |
# demo.launch()
|
408 |
-
|
409 |
import gradio as gr
|
410 |
import pandas as pd
|
411 |
from datasets import load_dataset
|
@@ -1278,9 +1277,9 @@ with gr.Blocks(
|
|
1278 |
ranking_method = gr.Radio(
|
1279 |
["Combined Score (WER 70%, CER 30%)", "WER Only", "CER Only"],
|
1280 |
label="π Ranking Method",
|
1281 |
-
value="Combined Score (WER 70%, CER 30%)"
|
1282 |
-
info="Choose how to rank the models"
|
1283 |
)
|
|
|
1284 |
|
1285 |
leaderboard_view = gr.DataFrame(
|
1286 |
value=initial_leaderboard,
|
@@ -1347,23 +1346,23 @@ with gr.Blocks(
|
|
1347 |
with gr.Column(scale=2):
|
1348 |
model_name_input = gr.Textbox(
|
1349 |
label="π€ Model Name",
|
1350 |
-
placeholder="e.g., MALIBA-AI/bambara-whisper-large"
|
1351 |
-
info="Use a descriptive name (organization/model format preferred)"
|
1352 |
)
|
|
|
1353 |
|
1354 |
model_type = gr.Dropdown(
|
1355 |
label="π·οΈ Model Type",
|
1356 |
choices=["Whisper-based", "Wav2Vec2", "Foundation", "Custom", "Fine-tuned", "Multilingual", "Other"],
|
1357 |
-
value="Custom"
|
1358 |
-
info="Select the type/architecture of your model"
|
1359 |
)
|
|
|
1360 |
|
1361 |
origin_country = gr.Dropdown(
|
1362 |
label="π Origin/Institution",
|
1363 |
choices=["Mali", "Senegal", "Burkina Faso", "Niger", "Guinea", "Ivory Coast", "USA", "France", "Canada", "UK", "Other"],
|
1364 |
-
value="Mali"
|
1365 |
-
info="Country or region of the developing institution"
|
1366 |
)
|
|
|
1367 |
|
1368 |
with gr.Column(scale=1):
|
1369 |
gr.Markdown("""
|
@@ -1383,9 +1382,9 @@ with gr.Blocks(
|
|
1383 |
|
1384 |
csv_upload = gr.File(
|
1385 |
label="π Upload Predictions CSV",
|
1386 |
-
file_types=[".csv"]
|
1387 |
-
info="Upload your model's transcriptions in the required CSV format"
|
1388 |
)
|
|
|
1389 |
|
1390 |
submit_btn = gr.Button("π Submit Model", variant="primary", size="lg", elem_classes=['gradio-button', 'primary'])
|
1391 |
|
@@ -1420,14 +1419,15 @@ with gr.Blocks(
|
|
1420 |
|
1421 |
model_1_dropdown = gr.Dropdown(
|
1422 |
choices=model_names,
|
1423 |
-
label="π€ Model 1"
|
1424 |
-
info="Select the first model for comparison"
|
1425 |
)
|
|
|
|
|
1426 |
model_2_dropdown = gr.Dropdown(
|
1427 |
choices=model_names,
|
1428 |
-
label="π€ Model 2"
|
1429 |
-
info="Select the second model for comparison"
|
1430 |
)
|
|
|
1431 |
|
1432 |
compare_btn = gr.Button("β‘ Compare Models", variant="primary", elem_classes=['gradio-button', 'primary'])
|
1433 |
|
|
|
405 |
|
406 |
# if __name__ == "__main__":
|
407 |
# demo.launch()
|
|
|
408 |
import gradio as gr
|
409 |
import pandas as pd
|
410 |
from datasets import load_dataset
|
|
|
1277 |
ranking_method = gr.Radio(
|
1278 |
["Combined Score (WER 70%, CER 30%)", "WER Only", "CER Only"],
|
1279 |
label="π Ranking Method",
|
1280 |
+
value="Combined Score (WER 70%, CER 30%)"
|
|
|
1281 |
)
|
1282 |
+
gr.Markdown("*Choose how to rank the models*")
|
1283 |
|
1284 |
leaderboard_view = gr.DataFrame(
|
1285 |
value=initial_leaderboard,
|
|
|
1346 |
with gr.Column(scale=2):
|
1347 |
model_name_input = gr.Textbox(
|
1348 |
label="π€ Model Name",
|
1349 |
+
placeholder="e.g., MALIBA-AI/bambara-whisper-large"
|
|
|
1350 |
)
|
1351 |
+
gr.Markdown("*Use a descriptive name (organization/model format preferred)*")
|
1352 |
|
1353 |
model_type = gr.Dropdown(
|
1354 |
label="π·οΈ Model Type",
|
1355 |
choices=["Whisper-based", "Wav2Vec2", "Foundation", "Custom", "Fine-tuned", "Multilingual", "Other"],
|
1356 |
+
value="Custom"
|
|
|
1357 |
)
|
1358 |
+
gr.Markdown("*Select the type/architecture of your model*")
|
1359 |
|
1360 |
origin_country = gr.Dropdown(
|
1361 |
label="π Origin/Institution",
|
1362 |
choices=["Mali", "Senegal", "Burkina Faso", "Niger", "Guinea", "Ivory Coast", "USA", "France", "Canada", "UK", "Other"],
|
1363 |
+
value="Mali"
|
|
|
1364 |
)
|
1365 |
+
gr.Markdown("*Country or region of the developing institution*")
|
1366 |
|
1367 |
with gr.Column(scale=1):
|
1368 |
gr.Markdown("""
|
|
|
1382 |
|
1383 |
csv_upload = gr.File(
|
1384 |
label="π Upload Predictions CSV",
|
1385 |
+
file_types=[".csv"]
|
|
|
1386 |
)
|
1387 |
+
gr.Markdown("*Upload your model's transcriptions in the required CSV format*")
|
1388 |
|
1389 |
submit_btn = gr.Button("π Submit Model", variant="primary", size="lg", elem_classes=['gradio-button', 'primary'])
|
1390 |
|
|
|
1419 |
|
1420 |
model_1_dropdown = gr.Dropdown(
|
1421 |
choices=model_names,
|
1422 |
+
label="π€ Model 1"
|
|
|
1423 |
)
|
1424 |
+
gr.Markdown("*Select the first model for comparison*")
|
1425 |
+
|
1426 |
model_2_dropdown = gr.Dropdown(
|
1427 |
choices=model_names,
|
1428 |
+
label="π€ Model 2"
|
|
|
1429 |
)
|
1430 |
+
gr.Markdown("*Select the second model for comparison*")
|
1431 |
|
1432 |
compare_btn = gr.Button("β‘ Compare Models", variant="primary", elem_classes=['gradio-button', 'primary'])
|
1433 |
|