Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Import libraries
|
2 |
+
import os
|
3 |
+
os.system('pip install transformers torch datasets')
|
4 |
+
from transformers import GPT2LMHeadModel, GPT2Tokenizer, AdamW
|
5 |
+
from torch.utils.data import Dataset, DataLoader
|
6 |
+
from datasets import load_dataset
|
7 |
+
from torch.nn.utils.rnn import pad_sequence
|
8 |
+
import torch
|
9 |
+
|
10 |
+
|
11 |
+
dataset = load_dataset("text", data_files={"train": "/BotDataset.txt"})
|
12 |
+
|
13 |
+
# Tokenization
|
14 |
+
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
|
15 |
+
|
16 |
+
class MyDataset(Dataset):
|
17 |
+
def __init__(self, texts, max_length=512):
|
18 |
+
self.texts = texts
|
19 |
+
self.max_length = max_length
|
20 |
+
|
21 |
+
def __len__(self):
|
22 |
+
return len(self.texts)
|
23 |
+
|
24 |
+
def __getitem__(self, idx):
|
25 |
+
# Tokenize the text without squeezing the tensor and convert to Long tensor
|
26 |
+
input_ids = tokenizer.encode(self.texts[idx], return_tensors='pt').long()
|
27 |
+
|
28 |
+
# Optionally truncate or pad the sequence to a maximum length
|
29 |
+
input_ids = input_ids[:, :self.max_length]
|
30 |
+
|
31 |
+
# If needed, pad the sequence to the max_length using torch.nn.functional.pad
|
32 |
+
input_ids = torch.nn.functional.pad(input_ids, (0, self.max_length - input_ids.size(1)), 'constant', 0)
|
33 |
+
|
34 |
+
return {'input_ids': input_ids}
|
35 |
+
|
36 |
+
# Create DataLoader without collate_fn
|
37 |
+
my_dataset = MyDataset(dataset['train']['text'])
|
38 |
+
dataloader = DataLoader(my_dataset, batch_size=4, shuffle=True)
|
39 |
+
|
40 |
+
# Load pre-trained model
|
41 |
+
model = GPT2LMHeadModel.from_pretrained("gpt2")
|
42 |
+
|
43 |
+
# Move model to GPU if available
|
44 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
45 |
+
model.to(device)
|
46 |
+
|
47 |
+
# Define optimizer
|
48 |
+
optimizer = AdamW(model.parameters(), lr=5e-5)
|
49 |
+
|
50 |
+
# Fine-tuning Loop
|
51 |
+
for epoch in range(4):
|
52 |
+
total_loss = 0.0
|
53 |
+
for i, batch in enumerate(dataloader):
|
54 |
+
batch = {k: v.to(device) for k, v in batch.items()}
|
55 |
+
outputs = model(**batch, labels=batch['input_ids'])
|
56 |
+
loss = outputs.loss
|
57 |
+
loss.backward()
|
58 |
+
optimizer.step()
|
59 |
+
optimizer.zero_grad()
|
60 |
+
|
61 |
+
total_loss += loss.item()
|
62 |
+
|
63 |
+
if (i + 1) % 100 == 0: # Print loss every 100 batches
|
64 |
+
average_loss = total_loss / 100
|
65 |
+
print(f"Epoch: {epoch + 1}, Batch: {i + 1}, Average Loss: {average_loss:.4f}")
|
66 |
+
total_loss = 0.0
|
67 |
+
|
68 |
+
print("Training complete!")
|
69 |
+
|
70 |
+
model.save_pretrained('/gpt2_better')
|
71 |
+
tokenizer.save_pretrained('/gpt2_better/tokenizer')
|