MAsad789565 commited on
Commit
f371534
·
verified ·
1 Parent(s): a6fc2af

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +71 -0
app.py ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Import libraries
2
+ import os
3
+ os.system('pip install transformers torch datasets')
4
+ from transformers import GPT2LMHeadModel, GPT2Tokenizer, AdamW
5
+ from torch.utils.data import Dataset, DataLoader
6
+ from datasets import load_dataset
7
+ from torch.nn.utils.rnn import pad_sequence
8
+ import torch
9
+
10
+
11
+ dataset = load_dataset("text", data_files={"train": "/BotDataset.txt"})
12
+
13
+ # Tokenization
14
+ tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
15
+
16
+ class MyDataset(Dataset):
17
+ def __init__(self, texts, max_length=512):
18
+ self.texts = texts
19
+ self.max_length = max_length
20
+
21
+ def __len__(self):
22
+ return len(self.texts)
23
+
24
+ def __getitem__(self, idx):
25
+ # Tokenize the text without squeezing the tensor and convert to Long tensor
26
+ input_ids = tokenizer.encode(self.texts[idx], return_tensors='pt').long()
27
+
28
+ # Optionally truncate or pad the sequence to a maximum length
29
+ input_ids = input_ids[:, :self.max_length]
30
+
31
+ # If needed, pad the sequence to the max_length using torch.nn.functional.pad
32
+ input_ids = torch.nn.functional.pad(input_ids, (0, self.max_length - input_ids.size(1)), 'constant', 0)
33
+
34
+ return {'input_ids': input_ids}
35
+
36
+ # Create DataLoader without collate_fn
37
+ my_dataset = MyDataset(dataset['train']['text'])
38
+ dataloader = DataLoader(my_dataset, batch_size=4, shuffle=True)
39
+
40
+ # Load pre-trained model
41
+ model = GPT2LMHeadModel.from_pretrained("gpt2")
42
+
43
+ # Move model to GPU if available
44
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
45
+ model.to(device)
46
+
47
+ # Define optimizer
48
+ optimizer = AdamW(model.parameters(), lr=5e-5)
49
+
50
+ # Fine-tuning Loop
51
+ for epoch in range(4):
52
+ total_loss = 0.0
53
+ for i, batch in enumerate(dataloader):
54
+ batch = {k: v.to(device) for k, v in batch.items()}
55
+ outputs = model(**batch, labels=batch['input_ids'])
56
+ loss = outputs.loss
57
+ loss.backward()
58
+ optimizer.step()
59
+ optimizer.zero_grad()
60
+
61
+ total_loss += loss.item()
62
+
63
+ if (i + 1) % 100 == 0: # Print loss every 100 batches
64
+ average_loss = total_loss / 100
65
+ print(f"Epoch: {epoch + 1}, Batch: {i + 1}, Average Loss: {average_loss:.4f}")
66
+ total_loss = 0.0
67
+
68
+ print("Training complete!")
69
+
70
+ model.save_pretrained('/gpt2_better')
71
+ tokenizer.save_pretrained('/gpt2_better/tokenizer')