Mahavaury2 commited on
Commit
92d7c75
·
verified ·
1 Parent(s): 987c5dd
Files changed (1) hide show
  1. app.py +43 -81
app.py CHANGED
@@ -1,101 +1,63 @@
1
- #!/usr/bin/env python
2
-
3
- import os
4
- from collections.abc import Iterator
5
- from threading import Thread
6
-
7
- import gradio as gr
8
- import spaces
9
  import torch
10
  from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
 
11
 
12
- DESCRIPTION = """
13
- <h1 style="color:black;">Mistral-7B v0.3</h1>
14
- """
15
-
16
- if not torch.cuda.is_available():
17
- DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
18
-
19
- MAX_MAX_NEW_TOKENS = 2048
20
- DEFAULT_MAX_NEW_TOKENS = 1024
21
- MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
22
 
 
23
  if torch.cuda.is_available():
24
  model_id = "mistralai/Mistral-7B-Instruct-v0.3"
25
  model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto")
26
  tokenizer = AutoTokenizer.from_pretrained(model_id)
 
 
 
27
 
 
28
 
29
- @spaces.GPU
30
- def generate(
31
- message: str,
32
- chat_history: list[dict],
33
- max_new_tokens: int = 1024,
34
- temperature: float = 0.6,
35
- top_p: float = 0.9,
36
- top_k: int = 50,
37
- repetition_penalty: float = 1.2,
38
- ) -> Iterator[str]:
39
- conversation = [*chat_history, {"role": "user", "content": message}]
40
  input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
41
  if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
42
  input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
43
- gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
44
  input_ids = input_ids.to(model.device)
45
-
46
  streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
47
- generate_kwargs = dict(
48
- {"input_ids": input_ids},
49
- streamer=streamer,
50
- max_new_tokens=max_new_tokens,
51
- do_sample=True,
52
- top_p=top_p,
53
- top_k=top_k,
54
- temperature=temperature,
55
- num_beams=1,
56
- repetition_penalty=repetition_penalty,
57
- )
58
  t = Thread(target=model.generate, kwargs=generate_kwargs)
59
  t.start()
60
-
61
- outputs = []
62
  for text in streamer:
63
- outputs.append(text)
64
- yield "".join(outputs)
65
-
66
-
67
- # CSS pour appliquer le dégradé pastel à TOUTE la page
68
- custom_css = """
69
- html, body {
70
- height: 100%;
71
- margin: 0;
72
- padding: 0;
73
- background: linear-gradient(135deg, #FDE2E2, #E2ECFD) !important;
74
- }
75
- """
76
-
77
- # Questions prédéfinies
78
- predefined_examples = [
79
- ["1 - C’est quoi le consentement ? Comment savoir si ma copine a envie de moi ?"], # noqa: RUF001
80
- ["2 - C’est quoi une agression sexuelle ?"],
81
- ["3 - C’est quoi un viol ?"],
82
- ["4 - C’est quoi un attouchement ?"],
83
- ["5 - C’est quoi un harcèlement sexuel ?"],
84
- ["6 - Est ce illégal de visionner du porno ?"],
85
- ["7 - Mon copain me demande un nude, dois-je le faire ?"],
86
- ["8 - Mon ancien copain me menace de poster des photos de moi nue sur internet, que faire ?"],
87
- [
88
- "9 - Que puis-je faire si un membre de ma famille me touche d’une manière bizarre, mais que j’ai peur de parler ou de ne pas être cru ?"
89
- ],
90
- ]
91
-
92
- demo = gr.ChatInterface(
93
- fn=generate,
94
- type="messages",
95
- description=DESCRIPTION,
96
- css=custom_css, # On applique le CSS pastel global
97
- examples=predefined_examples,
98
- )
99
 
100
  if __name__ == "__main__":
101
- demo.queue(max_size=20).launch()
 
1
+ from fastapi import FastAPI, Request
2
+ from fastapi.responses import HTMLResponse, JSONResponse
3
+ import uvicorn
 
 
 
 
 
4
  import torch
5
  from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
6
+ from threading import Thread
7
 
8
+ app = FastAPI()
 
 
 
 
 
 
 
 
 
9
 
10
+ # Chargement du modèle uniquement si CUDA est disponible
11
  if torch.cuda.is_available():
12
  model_id = "mistralai/Mistral-7B-Instruct-v0.3"
13
  model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto")
14
  tokenizer = AutoTokenizer.from_pretrained(model_id)
15
+ else:
16
+ model = None
17
+ tokenizer = None
18
 
19
+ MAX_INPUT_TOKEN_LENGTH = 4096
20
 
21
+ def generate_response(message: str, history: list) -> str:
22
+ conversation = history + [{"role": "user", "content": message}]
 
 
 
 
 
 
 
 
 
23
  input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
24
  if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
25
  input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
 
26
  input_ids = input_ids.to(model.device)
27
+
28
  streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
29
+ generate_kwargs = {
30
+ "input_ids": input_ids,
31
+ "streamer": streamer,
32
+ "max_new_tokens": 1024,
33
+ "do_sample": True,
34
+ "top_p": 0.9,
35
+ "top_k": 50,
36
+ "temperature": 0.6,
37
+ "num_beams": 1,
38
+ "repetition_penalty": 1.2,
39
+ }
40
  t = Thread(target=model.generate, kwargs=generate_kwargs)
41
  t.start()
42
+
43
+ response_text = ""
44
  for text in streamer:
45
+ response_text += text
46
+ return response_text
47
+
48
+ @app.post("/chat")
49
+ async def chat_endpoint(request: Request):
50
+ data = await request.json()
51
+ message = data.get("message", "")
52
+ # Utilisation d'un historique vide pour simplifier
53
+ response_text = generate_response(message, history=[])
54
+ return JSONResponse({"response": response_text})
55
+
56
+ @app.get("/", response_class=HTMLResponse)
57
+ async def root():
58
+ with open("index.html", "r", encoding="utf-8") as f:
59
+ html_content = f.read()
60
+ return HTMLResponse(content=html_content, status_code=200)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61
 
62
  if __name__ == "__main__":
63
+ uvicorn.run(app, host="0.0.0.0", port=8000)