Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -2,14 +2,13 @@ import os
|
|
2 |
import streamlit as st
|
3 |
import speech_recognition as sr
|
4 |
from gtts import gTTS
|
5 |
-
import google.generativeai as genai
|
6 |
import base64
|
7 |
from transformers import pipeline
|
8 |
|
|
|
9 |
genai.configure(api_key=os.getenv("GENAI_API_KEY"))
|
10 |
-
|
11 |
-
|
12 |
-
# Initialize recognizer
|
13 |
recognizer = sr.Recognizer()
|
14 |
|
15 |
# Emotion Detection Model
|
@@ -17,98 +16,88 @@ emotion_model = pipeline("text-classification", model="bhadresh-savani/distilber
|
|
17 |
|
18 |
# Function to detect emotion
|
19 |
def detect_emotion(text):
|
20 |
-
|
21 |
-
return emotion
|
22 |
|
23 |
-
# Function to listen to
|
24 |
-
def
|
25 |
with sr.Microphone() as source:
|
26 |
st.write("Listening...")
|
27 |
audio = recognizer.listen(source)
|
28 |
try:
|
29 |
-
|
30 |
-
st.write(f"Customer said: {text}")
|
31 |
-
return text
|
32 |
except Exception as e:
|
33 |
st.error(f"Speech Recognition Error: {str(e)}")
|
34 |
return None
|
35 |
|
36 |
-
#
|
37 |
-
def
|
38 |
-
if
|
39 |
try:
|
40 |
-
model = genai.GenerativeModel('gemini-1.5-flash')
|
41 |
-
response = model.generate_content(
|
42 |
return response.text
|
43 |
except Exception as e:
|
44 |
return f"Error in AI response: {str(e)}"
|
45 |
-
|
46 |
-
return "Sorry, I didn't catch that. Could you please repeat?"
|
47 |
|
48 |
-
#
|
49 |
-
def text_to_speech(text,
|
50 |
lang_code = {"English": "en", "Spanish": "es", "French": "fr", "Hindi": "hi"}.get(language, "en")
|
51 |
-
tts = gTTS(text=text, lang=lang_code
|
52 |
file_path = "response.mp3"
|
53 |
tts.save(file_path)
|
54 |
return file_path
|
55 |
|
56 |
-
#
|
57 |
def autoplay_audio(file_path):
|
58 |
with open(file_path, "rb") as f:
|
59 |
-
|
60 |
-
|
61 |
-
audio_html = f"""
|
62 |
<audio controls autoplay>
|
63 |
<source src="data:audio/mp3;base64,{b64}" type="audio/mp3">
|
64 |
</audio>
|
65 |
-
|
66 |
-
st.markdown(audio_html, unsafe_allow_html=True)
|
67 |
|
68 |
-
#
|
69 |
def main():
|
70 |
-
st.title("Vocacity AI Voice
|
71 |
st.sidebar.header("Settings")
|
72 |
|
73 |
# User settings
|
74 |
language = st.sidebar.selectbox("Choose Language:", ["English", "Spanish", "French", "Hindi"])
|
75 |
-
voice_option = st.sidebar.selectbox("Choose AI Voice:", ["Male", "Female"])
|
76 |
clear_chat = st.sidebar.button("ποΈ Clear Chat")
|
77 |
|
78 |
if "chat_history" not in st.session_state:
|
79 |
st.session_state.chat_history = []
|
80 |
-
|
81 |
-
#
|
82 |
-
|
83 |
-
|
84 |
-
# Voice Input Button
|
85 |
if st.button("ποΈ Speak"):
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
ai_response = process_text(customer_input)
|
93 |
-
st.session_state.chat_history.append((customer_input, ai_response))
|
94 |
|
95 |
-
st.write(f"**AI
|
96 |
|
97 |
-
# Convert response to speech
|
98 |
-
audio_file = text_to_speech(ai_response,
|
99 |
autoplay_audio(audio_file)
|
100 |
os.remove(audio_file)
|
101 |
-
|
102 |
# Display chat history
|
103 |
st.write("### Chat History")
|
104 |
for user, ai in st.session_state.chat_history[-5:]:
|
105 |
st.write(f"π€ {user}")
|
106 |
st.write(f"π€ {ai}")
|
107 |
-
|
108 |
-
# Clear
|
109 |
if clear_chat:
|
110 |
st.session_state.chat_history = []
|
111 |
st.experimental_rerun()
|
112 |
|
113 |
if __name__ == "__main__":
|
114 |
-
main()
|
|
|
2 |
import streamlit as st
|
3 |
import speech_recognition as sr
|
4 |
from gtts import gTTS
|
5 |
+
import google.generativeai as genai
|
6 |
import base64
|
7 |
from transformers import pipeline
|
8 |
|
9 |
+
# Set up Google AI API key
|
10 |
genai.configure(api_key=os.getenv("GENAI_API_KEY"))
|
11 |
+
# Initialize speech recognizer
|
|
|
|
|
12 |
recognizer = sr.Recognizer()
|
13 |
|
14 |
# Emotion Detection Model
|
|
|
16 |
|
17 |
# Function to detect emotion
|
18 |
def detect_emotion(text):
|
19 |
+
return emotion_model(text)[0]['label']
|
|
|
20 |
|
21 |
+
# Function to listen to the user
|
22 |
+
def listen_to_user():
|
23 |
with sr.Microphone() as source:
|
24 |
st.write("Listening...")
|
25 |
audio = recognizer.listen(source)
|
26 |
try:
|
27 |
+
return recognizer.recognize_google(audio)
|
|
|
|
|
28 |
except Exception as e:
|
29 |
st.error(f"Speech Recognition Error: {str(e)}")
|
30 |
return None
|
31 |
|
32 |
+
# AI Response Generation
|
33 |
+
def generate_ai_response(user_input):
|
34 |
+
if user_input:
|
35 |
try:
|
36 |
+
model = genai.GenerativeModel('gemini-1.5-flash')
|
37 |
+
response = model.generate_content(user_input)
|
38 |
return response.text
|
39 |
except Exception as e:
|
40 |
return f"Error in AI response: {str(e)}"
|
41 |
+
return "Sorry, I didn't catch that."
|
|
|
42 |
|
43 |
+
# Convert Text to Speech
|
44 |
+
def text_to_speech(text, language):
|
45 |
lang_code = {"English": "en", "Spanish": "es", "French": "fr", "Hindi": "hi"}.get(language, "en")
|
46 |
+
tts = gTTS(text=text, lang=lang_code)
|
47 |
file_path = "response.mp3"
|
48 |
tts.save(file_path)
|
49 |
return file_path
|
50 |
|
51 |
+
# Autoplay Audio in Streamlit
|
52 |
def autoplay_audio(file_path):
|
53 |
with open(file_path, "rb") as f:
|
54 |
+
b64 = base64.b64encode(f.read()).decode()
|
55 |
+
st.markdown(f"""
|
|
|
56 |
<audio controls autoplay>
|
57 |
<source src="data:audio/mp3;base64,{b64}" type="audio/mp3">
|
58 |
</audio>
|
59 |
+
""", unsafe_allow_html=True)
|
|
|
60 |
|
61 |
+
# Streamlit UI
|
62 |
def main():
|
63 |
+
st.title("ποΈ Vocacity AI Voice Assistant")
|
64 |
st.sidebar.header("Settings")
|
65 |
|
66 |
# User settings
|
67 |
language = st.sidebar.selectbox("Choose Language:", ["English", "Spanish", "French", "Hindi"])
|
|
|
68 |
clear_chat = st.sidebar.button("ποΈ Clear Chat")
|
69 |
|
70 |
if "chat_history" not in st.session_state:
|
71 |
st.session_state.chat_history = []
|
72 |
+
|
73 |
+
# User Input
|
74 |
+
user_input = st.text_input("Type your query here:", "")
|
75 |
+
|
|
|
76 |
if st.button("ποΈ Speak"):
|
77 |
+
user_input = listen_to_user()
|
78 |
+
|
79 |
+
if user_input:
|
80 |
+
emotion = detect_emotion(user_input)
|
81 |
+
ai_response = generate_ai_response(user_input)
|
82 |
+
st.session_state.chat_history.append((user_input, ai_response))
|
|
|
|
|
83 |
|
84 |
+
st.write(f"**AI:** {ai_response} (Emotion: {emotion})")
|
85 |
|
86 |
+
# Convert AI response to speech
|
87 |
+
audio_file = text_to_speech(ai_response, language)
|
88 |
autoplay_audio(audio_file)
|
89 |
os.remove(audio_file)
|
90 |
+
|
91 |
# Display chat history
|
92 |
st.write("### Chat History")
|
93 |
for user, ai in st.session_state.chat_history[-5:]:
|
94 |
st.write(f"π€ {user}")
|
95 |
st.write(f"π€ {ai}")
|
96 |
+
|
97 |
+
# Clear Chat
|
98 |
if clear_chat:
|
99 |
st.session_state.chat_history = []
|
100 |
st.experimental_rerun()
|
101 |
|
102 |
if __name__ == "__main__":
|
103 |
+
main()
|