Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torchvision
|
3 |
+
from torchvision import transforms
|
4 |
+
import gradio as gr
|
5 |
+
import numpy as np
|
6 |
+
from PIL import Image
|
7 |
+
from pytorch_grad_cam import GradCAM
|
8 |
+
from pytorch_grad_cam.utils.image import show_cam_on_image
|
9 |
+
from resnet import ResNet18
|
10 |
+
|
11 |
+
model = ResNet18()
|
12 |
+
model.load_state_dict(torch.load("model.pth", map_location=torch.device('cpu') ), strict=False)
|
13 |
+
|
14 |
+
|
15 |
+
inv_normalize = transforms.Normalize(
|
16 |
+
mean=[-0.50/0.23, -0.50/0.23, -0.50/0.23],
|
17 |
+
std = [1/0.23, 1/0.23, 1/0.23]
|
18 |
+
)
|
19 |
+
|
20 |
+
classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
|
21 |
+
|
22 |
+
def resize_image_pil(image, new_width, new_height):
|
23 |
+
|
24 |
+
# convert to PIL IMage
|
25 |
+
img = Image.fromarray(np.array(image))
|
26 |
+
# get original size
|
27 |
+
width, height = img.size
|
28 |
+
|
29 |
+
# calculate scale
|
30 |
+
width_scale = new_width/width
|
31 |
+
height_scale = new_height/height
|
32 |
+
|
33 |
+
scale = min(width_scale, height_scale)
|
34 |
+
|
35 |
+
# resize
|
36 |
+
resized = img.resize(size=(int(width*scale), int(height*scale)), resample=Image.NEAREST)
|
37 |
+
|
38 |
+
# crop resized image
|
39 |
+
resized = resized.crop((0, 0, new_width, new_height))
|
40 |
+
|
41 |
+
return resized
|
42 |
+
|
43 |
+
def inference(input_image, transparency=0.5, target_layer_number=-1):
|
44 |
+
input_image = resize_image_pil(input_image, 32, 32)
|
45 |
+
input_image = np.array(input_image)
|
46 |
+
org_img = input_image
|
47 |
+
input_image = input_image.reshape((32, 32, 3))
|
48 |
+
transforms = transforms.ToTensor()
|
49 |
+
input_image = transforms(input_image)
|
50 |
+
input_image = input_image.unsqueeze(0)
|
51 |
+
outputs = model(input_image)
|
52 |
+
softmax = torch.nn.Softmax(dim=0)
|
53 |
+
o = softmax(outputs.flatten())
|
54 |
+
confidences = {classes[i]: float(o[i]) for i in range(10)}
|
55 |
+
_, prediction = torch.max(outputs, 1)
|
56 |
+
target_layers = [model.layer2[target_layer_number]]
|
57 |
+
cam = GradCAM(model= model, target_layers = target_layers)
|
58 |
+
grayscale_cam = cam(input_tensor=input_image, target=None)
|
59 |
+
grayscale_cam = grayscale_cam[0, :]
|
60 |
+
visualization = show_cam_on_image(
|
61 |
+
org_img/255,
|
62 |
+
grayscale_cam,
|
63 |
+
use_rgb=True,
|
64 |
+
image_weight = transparency
|
65 |
+
)
|
66 |
+
|
67 |
+
return classes[prediction[0].item(), visualization, confidences]
|
68 |
+
|
69 |
+
demo = gr.Interface(
|
70 |
+
inference,
|
71 |
+
inputs = [
|
72 |
+
gr,Image(width=256, height=256, label="Input Image"),
|
73 |
+
gr.Slider(0, 1, value=0.5, label="Overall opacity fo the overlay"),
|
74 |
+
gr.Slider(-2, -1, value=-2, step=1, label="Which GradCAM layer?")
|
75 |
+
],
|
76 |
+
outputs = [
|
77 |
+
"text",
|
78 |
+
gr.Image(width=256, height=256, label="Output"),
|
79 |
+
gr.Label(num_top_classes=3)
|
80 |
+
],
|
81 |
+
title="CIFAR10 trained on ResNet18 with GradCAM feature",
|
82 |
+
description = "A simple Gradio app for checking GradCAM outputs from results of ResNet18 model."
|
83 |
+
examples = [["cat.jpg", 0.5, -1], ["dog.jpg", 0.7, -2]
|
84 |
+
)
|
85 |
+
|
86 |
+
demo.launch()
|