Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import pipeline | |
import torch | |
# Load the BART model for summarization | |
summarizer = pipeline("summarization", | |
model="facebook/bart-large-cnn") | |
# Function to summarize the input text | |
def summarize_text(input_text): | |
# Ensure the text is not too short for summarization | |
if len(input_text.split()) < 10: | |
return "Please provide a longer text for summarization." | |
# Summarize the text using BART | |
summarized_output = summarizer(input_text, | |
min_length=10, | |
max_length=100, | |
do_sample=False) | |
return summarized_output[0]['summary_text'] | |
# Create the Gradio interface | |
interface = gr.Interface( | |
fn=summarize_text, # Function that summarizes the input | |
inputs=gr.Textbox(label="Input Text", | |
lines=10, | |
placeholder="Enter a long piece of text here..."), # Text input field | |
outputs=gr.Textbox(label="Summarized Text"), # Output field for the summarized text | |
title="Text Summarizer", # Title of the app | |
description="Enter a text, and this app will summarize it using the BART model. The summary will be between 10 and 100 tokens.", # Description | |
live=False, # Disable live updates while typing | |
) | |
# Launch the interface | |
interface.launch() | |