Spaces:
Runtime error
Runtime error
Upload 3 files
Browse files- sgm/modules/__init__.py +8 -0
- sgm/modules/attention.py +635 -0
- sgm/modules/ema.py +86 -0
sgm/modules/__init__.py
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .encoders.modules import GeneralConditioner
|
| 2 |
+
from .encoders.modules import GeneralConditionerWithControl
|
| 3 |
+
from .encoders.modules import PreparedConditioner
|
| 4 |
+
|
| 5 |
+
UNCONDITIONAL_CONFIG = {
|
| 6 |
+
"target": "sgm.modules.GeneralConditioner",
|
| 7 |
+
"params": {"emb_models": []},
|
| 8 |
+
}
|
sgm/modules/attention.py
ADDED
|
@@ -0,0 +1,635 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
from inspect import isfunction
|
| 3 |
+
from typing import Any, Optional
|
| 4 |
+
|
| 5 |
+
import torch
|
| 6 |
+
import torch.nn.functional as F
|
| 7 |
+
# from einops._torch_specific import allow_ops_in_compiled_graph
|
| 8 |
+
# allow_ops_in_compiled_graph()
|
| 9 |
+
from einops import rearrange, repeat
|
| 10 |
+
from packaging import version
|
| 11 |
+
from torch import nn
|
| 12 |
+
|
| 13 |
+
if version.parse(torch.__version__) >= version.parse("2.0.0"):
|
| 14 |
+
SDP_IS_AVAILABLE = True
|
| 15 |
+
from torch.backends.cuda import SDPBackend, sdp_kernel
|
| 16 |
+
|
| 17 |
+
BACKEND_MAP = {
|
| 18 |
+
SDPBackend.MATH: {
|
| 19 |
+
"enable_math": True,
|
| 20 |
+
"enable_flash": False,
|
| 21 |
+
"enable_mem_efficient": False,
|
| 22 |
+
},
|
| 23 |
+
SDPBackend.FLASH_ATTENTION: {
|
| 24 |
+
"enable_math": False,
|
| 25 |
+
"enable_flash": True,
|
| 26 |
+
"enable_mem_efficient": False,
|
| 27 |
+
},
|
| 28 |
+
SDPBackend.EFFICIENT_ATTENTION: {
|
| 29 |
+
"enable_math": False,
|
| 30 |
+
"enable_flash": False,
|
| 31 |
+
"enable_mem_efficient": True,
|
| 32 |
+
},
|
| 33 |
+
None: {"enable_math": True, "enable_flash": True, "enable_mem_efficient": True},
|
| 34 |
+
}
|
| 35 |
+
else:
|
| 36 |
+
from contextlib import nullcontext
|
| 37 |
+
|
| 38 |
+
SDP_IS_AVAILABLE = False
|
| 39 |
+
sdp_kernel = nullcontext
|
| 40 |
+
BACKEND_MAP = {}
|
| 41 |
+
print(
|
| 42 |
+
f"No SDP backend available, likely because you are running in pytorch versions < 2.0. In fact, "
|
| 43 |
+
f"you are using PyTorch {torch.__version__}. You might want to consider upgrading."
|
| 44 |
+
)
|
| 45 |
+
|
| 46 |
+
try:
|
| 47 |
+
import xformers
|
| 48 |
+
import xformers.ops
|
| 49 |
+
|
| 50 |
+
XFORMERS_IS_AVAILABLE = True
|
| 51 |
+
except:
|
| 52 |
+
XFORMERS_IS_AVAILABLE = False
|
| 53 |
+
print("no module 'xformers'. Processing without...")
|
| 54 |
+
|
| 55 |
+
from .diffusionmodules.util import checkpoint
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
def exists(val):
|
| 59 |
+
return val is not None
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
def uniq(arr):
|
| 63 |
+
return {el: True for el in arr}.keys()
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
def default(val, d):
|
| 67 |
+
if exists(val):
|
| 68 |
+
return val
|
| 69 |
+
return d() if isfunction(d) else d
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
def max_neg_value(t):
|
| 73 |
+
return -torch.finfo(t.dtype).max
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
def init_(tensor):
|
| 77 |
+
dim = tensor.shape[-1]
|
| 78 |
+
std = 1 / math.sqrt(dim)
|
| 79 |
+
tensor.uniform_(-std, std)
|
| 80 |
+
return tensor
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
# feedforward
|
| 84 |
+
class GEGLU(nn.Module):
|
| 85 |
+
def __init__(self, dim_in, dim_out):
|
| 86 |
+
super().__init__()
|
| 87 |
+
self.proj = nn.Linear(dim_in, dim_out * 2)
|
| 88 |
+
|
| 89 |
+
def forward(self, x):
|
| 90 |
+
x, gate = self.proj(x).chunk(2, dim=-1)
|
| 91 |
+
return x * F.gelu(gate)
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
class FeedForward(nn.Module):
|
| 95 |
+
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.0):
|
| 96 |
+
super().__init__()
|
| 97 |
+
inner_dim = int(dim * mult)
|
| 98 |
+
dim_out = default(dim_out, dim)
|
| 99 |
+
project_in = (
|
| 100 |
+
nn.Sequential(nn.Linear(dim, inner_dim), nn.GELU())
|
| 101 |
+
if not glu
|
| 102 |
+
else GEGLU(dim, inner_dim)
|
| 103 |
+
)
|
| 104 |
+
|
| 105 |
+
self.net = nn.Sequential(
|
| 106 |
+
project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out)
|
| 107 |
+
)
|
| 108 |
+
|
| 109 |
+
def forward(self, x):
|
| 110 |
+
return self.net(x)
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
def zero_module(module):
|
| 114 |
+
"""
|
| 115 |
+
Zero out the parameters of a module and return it.
|
| 116 |
+
"""
|
| 117 |
+
for p in module.parameters():
|
| 118 |
+
p.detach().zero_()
|
| 119 |
+
return module
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
def Normalize(in_channels):
|
| 123 |
+
return torch.nn.GroupNorm(
|
| 124 |
+
num_groups=32, num_channels=in_channels, eps=1e-6, affine=True
|
| 125 |
+
)
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
class LinearAttention(nn.Module):
|
| 129 |
+
def __init__(self, dim, heads=4, dim_head=32):
|
| 130 |
+
super().__init__()
|
| 131 |
+
self.heads = heads
|
| 132 |
+
hidden_dim = dim_head * heads
|
| 133 |
+
self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias=False)
|
| 134 |
+
self.to_out = nn.Conv2d(hidden_dim, dim, 1)
|
| 135 |
+
|
| 136 |
+
def forward(self, x):
|
| 137 |
+
b, c, h, w = x.shape
|
| 138 |
+
qkv = self.to_qkv(x)
|
| 139 |
+
q, k, v = rearrange(
|
| 140 |
+
qkv, "b (qkv heads c) h w -> qkv b heads c (h w)", heads=self.heads, qkv=3
|
| 141 |
+
)
|
| 142 |
+
k = k.softmax(dim=-1)
|
| 143 |
+
context = torch.einsum("bhdn,bhen->bhde", k, v)
|
| 144 |
+
out = torch.einsum("bhde,bhdn->bhen", context, q)
|
| 145 |
+
out = rearrange(
|
| 146 |
+
out, "b heads c (h w) -> b (heads c) h w", heads=self.heads, h=h, w=w
|
| 147 |
+
)
|
| 148 |
+
return self.to_out(out)
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
class SpatialSelfAttention(nn.Module):
|
| 152 |
+
def __init__(self, in_channels):
|
| 153 |
+
super().__init__()
|
| 154 |
+
self.in_channels = in_channels
|
| 155 |
+
|
| 156 |
+
self.norm = Normalize(in_channels)
|
| 157 |
+
self.q = torch.nn.Conv2d(
|
| 158 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
| 159 |
+
)
|
| 160 |
+
self.k = torch.nn.Conv2d(
|
| 161 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
| 162 |
+
)
|
| 163 |
+
self.v = torch.nn.Conv2d(
|
| 164 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
| 165 |
+
)
|
| 166 |
+
self.proj_out = torch.nn.Conv2d(
|
| 167 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
| 168 |
+
)
|
| 169 |
+
|
| 170 |
+
def forward(self, x):
|
| 171 |
+
h_ = x
|
| 172 |
+
h_ = self.norm(h_)
|
| 173 |
+
q = self.q(h_)
|
| 174 |
+
k = self.k(h_)
|
| 175 |
+
v = self.v(h_)
|
| 176 |
+
|
| 177 |
+
# compute attention
|
| 178 |
+
b, c, h, w = q.shape
|
| 179 |
+
q = rearrange(q, "b c h w -> b (h w) c")
|
| 180 |
+
k = rearrange(k, "b c h w -> b c (h w)")
|
| 181 |
+
w_ = torch.einsum("bij,bjk->bik", q, k)
|
| 182 |
+
|
| 183 |
+
w_ = w_ * (int(c) ** (-0.5))
|
| 184 |
+
w_ = torch.nn.functional.softmax(w_, dim=2)
|
| 185 |
+
|
| 186 |
+
# attend to values
|
| 187 |
+
v = rearrange(v, "b c h w -> b c (h w)")
|
| 188 |
+
w_ = rearrange(w_, "b i j -> b j i")
|
| 189 |
+
h_ = torch.einsum("bij,bjk->bik", v, w_)
|
| 190 |
+
h_ = rearrange(h_, "b c (h w) -> b c h w", h=h)
|
| 191 |
+
h_ = self.proj_out(h_)
|
| 192 |
+
|
| 193 |
+
return x + h_
|
| 194 |
+
|
| 195 |
+
|
| 196 |
+
class CrossAttention(nn.Module):
|
| 197 |
+
def __init__(
|
| 198 |
+
self,
|
| 199 |
+
query_dim,
|
| 200 |
+
context_dim=None,
|
| 201 |
+
heads=8,
|
| 202 |
+
dim_head=64,
|
| 203 |
+
dropout=0.0,
|
| 204 |
+
backend=None,
|
| 205 |
+
):
|
| 206 |
+
super().__init__()
|
| 207 |
+
inner_dim = dim_head * heads
|
| 208 |
+
context_dim = default(context_dim, query_dim)
|
| 209 |
+
|
| 210 |
+
self.scale = dim_head**-0.5
|
| 211 |
+
self.heads = heads
|
| 212 |
+
|
| 213 |
+
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
| 214 |
+
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
|
| 215 |
+
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
|
| 216 |
+
|
| 217 |
+
self.to_out = nn.Sequential(
|
| 218 |
+
nn.Linear(inner_dim, query_dim), nn.Dropout(dropout)
|
| 219 |
+
)
|
| 220 |
+
self.backend = backend
|
| 221 |
+
|
| 222 |
+
def forward(
|
| 223 |
+
self,
|
| 224 |
+
x,
|
| 225 |
+
context=None,
|
| 226 |
+
mask=None,
|
| 227 |
+
additional_tokens=None,
|
| 228 |
+
n_times_crossframe_attn_in_self=0,
|
| 229 |
+
):
|
| 230 |
+
h = self.heads
|
| 231 |
+
|
| 232 |
+
if additional_tokens is not None:
|
| 233 |
+
# get the number of masked tokens at the beginning of the output sequence
|
| 234 |
+
n_tokens_to_mask = additional_tokens.shape[1]
|
| 235 |
+
# add additional token
|
| 236 |
+
x = torch.cat([additional_tokens, x], dim=1)
|
| 237 |
+
|
| 238 |
+
q = self.to_q(x)
|
| 239 |
+
context = default(context, x)
|
| 240 |
+
k = self.to_k(context)
|
| 241 |
+
v = self.to_v(context)
|
| 242 |
+
|
| 243 |
+
if n_times_crossframe_attn_in_self:
|
| 244 |
+
# reprogramming cross-frame attention as in https://arxiv.org/abs/2303.13439
|
| 245 |
+
assert x.shape[0] % n_times_crossframe_attn_in_self == 0
|
| 246 |
+
n_cp = x.shape[0] // n_times_crossframe_attn_in_self
|
| 247 |
+
k = repeat(
|
| 248 |
+
k[::n_times_crossframe_attn_in_self], "b ... -> (b n) ...", n=n_cp
|
| 249 |
+
)
|
| 250 |
+
v = repeat(
|
| 251 |
+
v[::n_times_crossframe_attn_in_self], "b ... -> (b n) ...", n=n_cp
|
| 252 |
+
)
|
| 253 |
+
|
| 254 |
+
q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b h n d", h=h), (q, k, v))
|
| 255 |
+
|
| 256 |
+
## old
|
| 257 |
+
"""
|
| 258 |
+
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
|
| 259 |
+
del q, k
|
| 260 |
+
|
| 261 |
+
if exists(mask):
|
| 262 |
+
mask = rearrange(mask, 'b ... -> b (...)')
|
| 263 |
+
max_neg_value = -torch.finfo(sim.dtype).max
|
| 264 |
+
mask = repeat(mask, 'b j -> (b h) () j', h=h)
|
| 265 |
+
sim.masked_fill_(~mask, max_neg_value)
|
| 266 |
+
|
| 267 |
+
# attention, what we cannot get enough of
|
| 268 |
+
sim = sim.softmax(dim=-1)
|
| 269 |
+
|
| 270 |
+
out = einsum('b i j, b j d -> b i d', sim, v)
|
| 271 |
+
"""
|
| 272 |
+
## new
|
| 273 |
+
with sdp_kernel(**BACKEND_MAP[self.backend]):
|
| 274 |
+
# print("dispatching into backend", self.backend, "q/k/v shape: ", q.shape, k.shape, v.shape)
|
| 275 |
+
out = F.scaled_dot_product_attention(
|
| 276 |
+
q, k, v, attn_mask=mask
|
| 277 |
+
) # scale is dim_head ** -0.5 per default
|
| 278 |
+
|
| 279 |
+
del q, k, v
|
| 280 |
+
out = rearrange(out, "b h n d -> b n (h d)", h=h)
|
| 281 |
+
|
| 282 |
+
if additional_tokens is not None:
|
| 283 |
+
# remove additional token
|
| 284 |
+
out = out[:, n_tokens_to_mask:]
|
| 285 |
+
return self.to_out(out)
|
| 286 |
+
|
| 287 |
+
|
| 288 |
+
class MemoryEfficientCrossAttention(nn.Module):
|
| 289 |
+
# https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223
|
| 290 |
+
def __init__(
|
| 291 |
+
self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0, **kwargs
|
| 292 |
+
):
|
| 293 |
+
super().__init__()
|
| 294 |
+
print(
|
| 295 |
+
f"Setting up {self.__class__.__name__}. Query dim is {query_dim}, context_dim is {context_dim} and using "
|
| 296 |
+
f"{heads} heads with a dimension of {dim_head}."
|
| 297 |
+
)
|
| 298 |
+
inner_dim = dim_head * heads
|
| 299 |
+
context_dim = default(context_dim, query_dim)
|
| 300 |
+
|
| 301 |
+
self.heads = heads
|
| 302 |
+
self.dim_head = dim_head
|
| 303 |
+
|
| 304 |
+
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
| 305 |
+
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
|
| 306 |
+
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
|
| 307 |
+
|
| 308 |
+
self.to_out = nn.Sequential(
|
| 309 |
+
nn.Linear(inner_dim, query_dim), nn.Dropout(dropout)
|
| 310 |
+
)
|
| 311 |
+
self.attention_op: Optional[Any] = None
|
| 312 |
+
|
| 313 |
+
def forward(
|
| 314 |
+
self,
|
| 315 |
+
x,
|
| 316 |
+
context=None,
|
| 317 |
+
mask=None,
|
| 318 |
+
additional_tokens=None,
|
| 319 |
+
n_times_crossframe_attn_in_self=0,
|
| 320 |
+
):
|
| 321 |
+
if additional_tokens is not None:
|
| 322 |
+
# get the number of masked tokens at the beginning of the output sequence
|
| 323 |
+
n_tokens_to_mask = additional_tokens.shape[1]
|
| 324 |
+
# add additional token
|
| 325 |
+
x = torch.cat([additional_tokens, x], dim=1)
|
| 326 |
+
q = self.to_q(x)
|
| 327 |
+
context = default(context, x)
|
| 328 |
+
k = self.to_k(context)
|
| 329 |
+
v = self.to_v(context)
|
| 330 |
+
|
| 331 |
+
if n_times_crossframe_attn_in_self:
|
| 332 |
+
# reprogramming cross-frame attention as in https://arxiv.org/abs/2303.13439
|
| 333 |
+
assert x.shape[0] % n_times_crossframe_attn_in_self == 0
|
| 334 |
+
# n_cp = x.shape[0]//n_times_crossframe_attn_in_self
|
| 335 |
+
k = repeat(
|
| 336 |
+
k[::n_times_crossframe_attn_in_self],
|
| 337 |
+
"b ... -> (b n) ...",
|
| 338 |
+
n=n_times_crossframe_attn_in_self,
|
| 339 |
+
)
|
| 340 |
+
v = repeat(
|
| 341 |
+
v[::n_times_crossframe_attn_in_self],
|
| 342 |
+
"b ... -> (b n) ...",
|
| 343 |
+
n=n_times_crossframe_attn_in_self,
|
| 344 |
+
)
|
| 345 |
+
|
| 346 |
+
b, _, _ = q.shape
|
| 347 |
+
q, k, v = map(
|
| 348 |
+
lambda t: t.unsqueeze(3)
|
| 349 |
+
.reshape(b, t.shape[1], self.heads, self.dim_head)
|
| 350 |
+
.permute(0, 2, 1, 3)
|
| 351 |
+
.reshape(b * self.heads, t.shape[1], self.dim_head)
|
| 352 |
+
.contiguous(),
|
| 353 |
+
(q, k, v),
|
| 354 |
+
)
|
| 355 |
+
|
| 356 |
+
# actually compute the attention, what we cannot get enough of
|
| 357 |
+
out = xformers.ops.memory_efficient_attention(
|
| 358 |
+
q, k, v, attn_bias=None, op=self.attention_op
|
| 359 |
+
)
|
| 360 |
+
|
| 361 |
+
# TODO: Use this directly in the attention operation, as a bias
|
| 362 |
+
if exists(mask):
|
| 363 |
+
raise NotImplementedError
|
| 364 |
+
out = (
|
| 365 |
+
out.unsqueeze(0)
|
| 366 |
+
.reshape(b, self.heads, out.shape[1], self.dim_head)
|
| 367 |
+
.permute(0, 2, 1, 3)
|
| 368 |
+
.reshape(b, out.shape[1], self.heads * self.dim_head)
|
| 369 |
+
)
|
| 370 |
+
if additional_tokens is not None:
|
| 371 |
+
# remove additional token
|
| 372 |
+
out = out[:, n_tokens_to_mask:]
|
| 373 |
+
return self.to_out(out)
|
| 374 |
+
|
| 375 |
+
|
| 376 |
+
class BasicTransformerBlock(nn.Module):
|
| 377 |
+
ATTENTION_MODES = {
|
| 378 |
+
"softmax": CrossAttention, # vanilla attention
|
| 379 |
+
"softmax-xformers": MemoryEfficientCrossAttention, # ampere
|
| 380 |
+
}
|
| 381 |
+
|
| 382 |
+
def __init__(
|
| 383 |
+
self,
|
| 384 |
+
dim,
|
| 385 |
+
n_heads,
|
| 386 |
+
d_head,
|
| 387 |
+
dropout=0.0,
|
| 388 |
+
context_dim=None,
|
| 389 |
+
gated_ff=True,
|
| 390 |
+
checkpoint=True,
|
| 391 |
+
disable_self_attn=False,
|
| 392 |
+
attn_mode="softmax",
|
| 393 |
+
sdp_backend=None,
|
| 394 |
+
):
|
| 395 |
+
super().__init__()
|
| 396 |
+
assert attn_mode in self.ATTENTION_MODES
|
| 397 |
+
if attn_mode != "softmax" and not XFORMERS_IS_AVAILABLE:
|
| 398 |
+
print(
|
| 399 |
+
f"Attention mode '{attn_mode}' is not available. Falling back to native attention. "
|
| 400 |
+
f"This is not a problem in Pytorch >= 2.0. FYI, you are running with PyTorch version {torch.__version__}"
|
| 401 |
+
)
|
| 402 |
+
attn_mode = "softmax"
|
| 403 |
+
elif attn_mode == "softmax" and not SDP_IS_AVAILABLE:
|
| 404 |
+
print(
|
| 405 |
+
"We do not support vanilla attention anymore, as it is too expensive. Sorry."
|
| 406 |
+
)
|
| 407 |
+
if not XFORMERS_IS_AVAILABLE:
|
| 408 |
+
assert (
|
| 409 |
+
False
|
| 410 |
+
), "Please install xformers via e.g. 'pip install xformers==0.0.16'"
|
| 411 |
+
else:
|
| 412 |
+
print("Falling back to xformers efficient attention.")
|
| 413 |
+
attn_mode = "softmax-xformers"
|
| 414 |
+
attn_cls = self.ATTENTION_MODES[attn_mode]
|
| 415 |
+
if version.parse(torch.__version__) >= version.parse("2.0.0"):
|
| 416 |
+
assert sdp_backend is None or isinstance(sdp_backend, SDPBackend)
|
| 417 |
+
else:
|
| 418 |
+
assert sdp_backend is None
|
| 419 |
+
self.disable_self_attn = disable_self_attn
|
| 420 |
+
self.attn1 = attn_cls(
|
| 421 |
+
query_dim=dim,
|
| 422 |
+
heads=n_heads,
|
| 423 |
+
dim_head=d_head,
|
| 424 |
+
dropout=dropout,
|
| 425 |
+
context_dim=context_dim if self.disable_self_attn else None,
|
| 426 |
+
backend=sdp_backend,
|
| 427 |
+
) # is a self-attention if not self.disable_self_attn
|
| 428 |
+
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
|
| 429 |
+
self.attn2 = attn_cls(
|
| 430 |
+
query_dim=dim,
|
| 431 |
+
context_dim=context_dim,
|
| 432 |
+
heads=n_heads,
|
| 433 |
+
dim_head=d_head,
|
| 434 |
+
dropout=dropout,
|
| 435 |
+
backend=sdp_backend,
|
| 436 |
+
) # is self-attn if context is none
|
| 437 |
+
self.norm1 = nn.LayerNorm(dim)
|
| 438 |
+
self.norm2 = nn.LayerNorm(dim)
|
| 439 |
+
self.norm3 = nn.LayerNorm(dim)
|
| 440 |
+
self.checkpoint = checkpoint
|
| 441 |
+
if self.checkpoint:
|
| 442 |
+
print(f"{self.__class__.__name__} is using checkpointing")
|
| 443 |
+
|
| 444 |
+
def forward(
|
| 445 |
+
self, x, context=None, additional_tokens=None, n_times_crossframe_attn_in_self=0
|
| 446 |
+
):
|
| 447 |
+
kwargs = {"x": x}
|
| 448 |
+
|
| 449 |
+
if context is not None:
|
| 450 |
+
kwargs.update({"context": context})
|
| 451 |
+
|
| 452 |
+
if additional_tokens is not None:
|
| 453 |
+
kwargs.update({"additional_tokens": additional_tokens})
|
| 454 |
+
|
| 455 |
+
if n_times_crossframe_attn_in_self:
|
| 456 |
+
kwargs.update(
|
| 457 |
+
{"n_times_crossframe_attn_in_self": n_times_crossframe_attn_in_self}
|
| 458 |
+
)
|
| 459 |
+
|
| 460 |
+
# return mixed_checkpoint(self._forward, kwargs, self.parameters(), self.checkpoint)
|
| 461 |
+
return checkpoint(
|
| 462 |
+
self._forward, (x, context), self.parameters(), self.checkpoint
|
| 463 |
+
)
|
| 464 |
+
|
| 465 |
+
def _forward(
|
| 466 |
+
self, x, context=None, additional_tokens=None, n_times_crossframe_attn_in_self=0
|
| 467 |
+
):
|
| 468 |
+
x = (
|
| 469 |
+
self.attn1(
|
| 470 |
+
self.norm1(x),
|
| 471 |
+
context=context if self.disable_self_attn else None,
|
| 472 |
+
additional_tokens=additional_tokens,
|
| 473 |
+
n_times_crossframe_attn_in_self=n_times_crossframe_attn_in_self
|
| 474 |
+
if not self.disable_self_attn
|
| 475 |
+
else 0,
|
| 476 |
+
)
|
| 477 |
+
+ x
|
| 478 |
+
)
|
| 479 |
+
x = (
|
| 480 |
+
self.attn2(
|
| 481 |
+
self.norm2(x), context=context, additional_tokens=additional_tokens
|
| 482 |
+
)
|
| 483 |
+
+ x
|
| 484 |
+
)
|
| 485 |
+
x = self.ff(self.norm3(x)) + x
|
| 486 |
+
return x
|
| 487 |
+
|
| 488 |
+
|
| 489 |
+
class BasicTransformerSingleLayerBlock(nn.Module):
|
| 490 |
+
ATTENTION_MODES = {
|
| 491 |
+
"softmax": CrossAttention, # vanilla attention
|
| 492 |
+
"softmax-xformers": MemoryEfficientCrossAttention # on the A100s not quite as fast as the above version
|
| 493 |
+
# (todo might depend on head_dim, check, falls back to semi-optimized kernels for dim!=[16,32,64,128])
|
| 494 |
+
}
|
| 495 |
+
|
| 496 |
+
def __init__(
|
| 497 |
+
self,
|
| 498 |
+
dim,
|
| 499 |
+
n_heads,
|
| 500 |
+
d_head,
|
| 501 |
+
dropout=0.0,
|
| 502 |
+
context_dim=None,
|
| 503 |
+
gated_ff=True,
|
| 504 |
+
checkpoint=True,
|
| 505 |
+
attn_mode="softmax",
|
| 506 |
+
):
|
| 507 |
+
super().__init__()
|
| 508 |
+
assert attn_mode in self.ATTENTION_MODES
|
| 509 |
+
attn_cls = self.ATTENTION_MODES[attn_mode]
|
| 510 |
+
self.attn1 = attn_cls(
|
| 511 |
+
query_dim=dim,
|
| 512 |
+
heads=n_heads,
|
| 513 |
+
dim_head=d_head,
|
| 514 |
+
dropout=dropout,
|
| 515 |
+
context_dim=context_dim,
|
| 516 |
+
)
|
| 517 |
+
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
|
| 518 |
+
self.norm1 = nn.LayerNorm(dim)
|
| 519 |
+
self.norm2 = nn.LayerNorm(dim)
|
| 520 |
+
self.checkpoint = checkpoint
|
| 521 |
+
|
| 522 |
+
def forward(self, x, context=None):
|
| 523 |
+
return checkpoint(
|
| 524 |
+
self._forward, (x, context), self.parameters(), self.checkpoint
|
| 525 |
+
)
|
| 526 |
+
|
| 527 |
+
def _forward(self, x, context=None):
|
| 528 |
+
x = self.attn1(self.norm1(x), context=context) + x
|
| 529 |
+
x = self.ff(self.norm2(x)) + x
|
| 530 |
+
return x
|
| 531 |
+
|
| 532 |
+
|
| 533 |
+
class SpatialTransformer(nn.Module):
|
| 534 |
+
"""
|
| 535 |
+
Transformer block for image-like data.
|
| 536 |
+
First, project the input (aka embedding)
|
| 537 |
+
and reshape to b, t, d.
|
| 538 |
+
Then apply standard transformer action.
|
| 539 |
+
Finally, reshape to image
|
| 540 |
+
NEW: use_linear for more efficiency instead of the 1x1 convs
|
| 541 |
+
"""
|
| 542 |
+
|
| 543 |
+
def __init__(
|
| 544 |
+
self,
|
| 545 |
+
in_channels,
|
| 546 |
+
n_heads,
|
| 547 |
+
d_head,
|
| 548 |
+
depth=1,
|
| 549 |
+
dropout=0.0,
|
| 550 |
+
context_dim=None,
|
| 551 |
+
disable_self_attn=False,
|
| 552 |
+
use_linear=False,
|
| 553 |
+
attn_type="softmax",
|
| 554 |
+
use_checkpoint=True,
|
| 555 |
+
# sdp_backend=SDPBackend.FLASH_ATTENTION
|
| 556 |
+
sdp_backend=None,
|
| 557 |
+
):
|
| 558 |
+
super().__init__()
|
| 559 |
+
print(
|
| 560 |
+
f"constructing {self.__class__.__name__} of depth {depth} w/ {in_channels} channels and {n_heads} heads"
|
| 561 |
+
)
|
| 562 |
+
from omegaconf import ListConfig
|
| 563 |
+
|
| 564 |
+
if exists(context_dim) and not isinstance(context_dim, (list, ListConfig)):
|
| 565 |
+
context_dim = [context_dim]
|
| 566 |
+
if exists(context_dim) and isinstance(context_dim, list):
|
| 567 |
+
if depth != len(context_dim):
|
| 568 |
+
print(
|
| 569 |
+
f"WARNING: {self.__class__.__name__}: Found context dims {context_dim} of depth {len(context_dim)}, "
|
| 570 |
+
f"which does not match the specified 'depth' of {depth}. Setting context_dim to {depth * [context_dim[0]]} now."
|
| 571 |
+
)
|
| 572 |
+
# depth does not match context dims.
|
| 573 |
+
assert all(
|
| 574 |
+
map(lambda x: x == context_dim[0], context_dim)
|
| 575 |
+
), "need homogenous context_dim to match depth automatically"
|
| 576 |
+
context_dim = depth * [context_dim[0]]
|
| 577 |
+
elif context_dim is None:
|
| 578 |
+
context_dim = [None] * depth
|
| 579 |
+
self.in_channels = in_channels
|
| 580 |
+
inner_dim = n_heads * d_head
|
| 581 |
+
self.norm = Normalize(in_channels)
|
| 582 |
+
if not use_linear:
|
| 583 |
+
self.proj_in = nn.Conv2d(
|
| 584 |
+
in_channels, inner_dim, kernel_size=1, stride=1, padding=0
|
| 585 |
+
)
|
| 586 |
+
else:
|
| 587 |
+
self.proj_in = nn.Linear(in_channels, inner_dim)
|
| 588 |
+
|
| 589 |
+
self.transformer_blocks = nn.ModuleList(
|
| 590 |
+
[
|
| 591 |
+
BasicTransformerBlock(
|
| 592 |
+
inner_dim,
|
| 593 |
+
n_heads,
|
| 594 |
+
d_head,
|
| 595 |
+
dropout=dropout,
|
| 596 |
+
context_dim=context_dim[d],
|
| 597 |
+
disable_self_attn=disable_self_attn,
|
| 598 |
+
attn_mode=attn_type,
|
| 599 |
+
checkpoint=use_checkpoint,
|
| 600 |
+
sdp_backend=sdp_backend,
|
| 601 |
+
)
|
| 602 |
+
for d in range(depth)
|
| 603 |
+
]
|
| 604 |
+
)
|
| 605 |
+
if not use_linear:
|
| 606 |
+
self.proj_out = zero_module(
|
| 607 |
+
nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
|
| 608 |
+
)
|
| 609 |
+
else:
|
| 610 |
+
# self.proj_out = zero_module(nn.Linear(in_channels, inner_dim))
|
| 611 |
+
self.proj_out = zero_module(nn.Linear(inner_dim, in_channels))
|
| 612 |
+
self.use_linear = use_linear
|
| 613 |
+
|
| 614 |
+
def forward(self, x, context=None):
|
| 615 |
+
# note: if no context is given, cross-attention defaults to self-attention
|
| 616 |
+
if not isinstance(context, list):
|
| 617 |
+
context = [context]
|
| 618 |
+
b, c, h, w = x.shape
|
| 619 |
+
x_in = x
|
| 620 |
+
x = self.norm(x)
|
| 621 |
+
if not self.use_linear:
|
| 622 |
+
x = self.proj_in(x)
|
| 623 |
+
x = rearrange(x, "b c h w -> b (h w) c").contiguous()
|
| 624 |
+
if self.use_linear:
|
| 625 |
+
x = self.proj_in(x)
|
| 626 |
+
for i, block in enumerate(self.transformer_blocks):
|
| 627 |
+
if i > 0 and len(context) == 1:
|
| 628 |
+
i = 0 # use same context for each block
|
| 629 |
+
x = block(x, context=context[i])
|
| 630 |
+
if self.use_linear:
|
| 631 |
+
x = self.proj_out(x)
|
| 632 |
+
x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w).contiguous()
|
| 633 |
+
if not self.use_linear:
|
| 634 |
+
x = self.proj_out(x)
|
| 635 |
+
return x + x_in
|
sgm/modules/ema.py
ADDED
|
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from torch import nn
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
class LitEma(nn.Module):
|
| 6 |
+
def __init__(self, model, decay=0.9999, use_num_upates=True):
|
| 7 |
+
super().__init__()
|
| 8 |
+
if decay < 0.0 or decay > 1.0:
|
| 9 |
+
raise ValueError("Decay must be between 0 and 1")
|
| 10 |
+
|
| 11 |
+
self.m_name2s_name = {}
|
| 12 |
+
self.register_buffer("decay", torch.tensor(decay, dtype=torch.float32))
|
| 13 |
+
self.register_buffer(
|
| 14 |
+
"num_updates",
|
| 15 |
+
torch.tensor(0, dtype=torch.int)
|
| 16 |
+
if use_num_upates
|
| 17 |
+
else torch.tensor(-1, dtype=torch.int),
|
| 18 |
+
)
|
| 19 |
+
|
| 20 |
+
for name, p in model.named_parameters():
|
| 21 |
+
if p.requires_grad:
|
| 22 |
+
# remove as '.'-character is not allowed in buffers
|
| 23 |
+
s_name = name.replace(".", "")
|
| 24 |
+
self.m_name2s_name.update({name: s_name})
|
| 25 |
+
self.register_buffer(s_name, p.clone().detach().data)
|
| 26 |
+
|
| 27 |
+
self.collected_params = []
|
| 28 |
+
|
| 29 |
+
def reset_num_updates(self):
|
| 30 |
+
del self.num_updates
|
| 31 |
+
self.register_buffer("num_updates", torch.tensor(0, dtype=torch.int))
|
| 32 |
+
|
| 33 |
+
def forward(self, model):
|
| 34 |
+
decay = self.decay
|
| 35 |
+
|
| 36 |
+
if self.num_updates >= 0:
|
| 37 |
+
self.num_updates += 1
|
| 38 |
+
decay = min(self.decay, (1 + self.num_updates) / (10 + self.num_updates))
|
| 39 |
+
|
| 40 |
+
one_minus_decay = 1.0 - decay
|
| 41 |
+
|
| 42 |
+
with torch.no_grad():
|
| 43 |
+
m_param = dict(model.named_parameters())
|
| 44 |
+
shadow_params = dict(self.named_buffers())
|
| 45 |
+
|
| 46 |
+
for key in m_param:
|
| 47 |
+
if m_param[key].requires_grad:
|
| 48 |
+
sname = self.m_name2s_name[key]
|
| 49 |
+
shadow_params[sname] = shadow_params[sname].type_as(m_param[key])
|
| 50 |
+
shadow_params[sname].sub_(
|
| 51 |
+
one_minus_decay * (shadow_params[sname] - m_param[key])
|
| 52 |
+
)
|
| 53 |
+
else:
|
| 54 |
+
assert not key in self.m_name2s_name
|
| 55 |
+
|
| 56 |
+
def copy_to(self, model):
|
| 57 |
+
m_param = dict(model.named_parameters())
|
| 58 |
+
shadow_params = dict(self.named_buffers())
|
| 59 |
+
for key in m_param:
|
| 60 |
+
if m_param[key].requires_grad:
|
| 61 |
+
m_param[key].data.copy_(shadow_params[self.m_name2s_name[key]].data)
|
| 62 |
+
else:
|
| 63 |
+
assert not key in self.m_name2s_name
|
| 64 |
+
|
| 65 |
+
def store(self, parameters):
|
| 66 |
+
"""
|
| 67 |
+
Save the current parameters for restoring later.
|
| 68 |
+
Args:
|
| 69 |
+
parameters: Iterable of `torch.nn.Parameter`; the parameters to be
|
| 70 |
+
temporarily stored.
|
| 71 |
+
"""
|
| 72 |
+
self.collected_params = [param.clone() for param in parameters]
|
| 73 |
+
|
| 74 |
+
def restore(self, parameters):
|
| 75 |
+
"""
|
| 76 |
+
Restore the parameters stored with the `store` method.
|
| 77 |
+
Useful to validate the model with EMA parameters without affecting the
|
| 78 |
+
original optimization process. Store the parameters before the
|
| 79 |
+
`copy_to` method. After validation (or model saving), use this to
|
| 80 |
+
restore the former parameters.
|
| 81 |
+
Args:
|
| 82 |
+
parameters: Iterable of `torch.nn.Parameter`; the parameters to be
|
| 83 |
+
updated with the stored parameters.
|
| 84 |
+
"""
|
| 85 |
+
for c_param, param in zip(self.collected_params, parameters):
|
| 86 |
+
param.data.copy_(c_param.data)
|